Relativity of the spectrum and

discrete groups on hyperbolic spaces

Author:
N. Mandouvalos

Journal:
Trans. Amer. Math. Soc. **350** (1998), 559-569

MSC (1991):
Primary 11F72

MathSciNet review:
1389787

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simple proof of the analytic continuation of the resolvent kernel for a convex cocompact Kleinian group.

**1.**Tomio Kubota,*Elementary theory of Eisenstein series*, Kodansha Ltd., Tokyo; Halsted Press [John Wiley & Sons], New York-London-Sydney, 1973. MR**0429749****2.**N. Mandouvalos,*The theory of Eisenstein series for Kleinian groups*, The Selberg trace formula and related topics (Brunswick, Maine, 1984), Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 357–370. MR**853566**, 10.1090/conm/053/853566**3.**N. Mandouvalos,*Spectral theory and Eisenstein series for Kleinian groups*, Proc. London Math. Soc. (3)**57**(1988), no. 2, 209–238. MR**950590**, 10.1112/plms/s3-57.2.209**4.**Nikolaos Mandouvalos,*Scattering operator, Eisenstein series, inner product formula and “Maass-Selberg” relations for Kleinian groups*, Mem. Amer. Math. Soc.**78**(1989), no. 400, iv+87. MR**989747**, 10.1090/memo/0400**5.**Rafe R. Mazzeo and Richard B. Melrose,*Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature*, J. Funct. Anal.**75**(1987), no. 2, 260–310. MR**916753**, 10.1016/0022-1236(87)90097-8**6.**S. J. Patterson,*The limit set of a Fuchsian group*, Acta Math.**136**(1976), no. 3-4, 241–273. MR**0450547****7.**S. J. Patterson,*The Selberg zeta-function of a Kleinian group*, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 409–441. MR**993330****8.**Peter A. Perry,*The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix*, J. Reine Angew. Math.**398**(1989), 67–91. MR**998472**, 10.1515/crll.1989.398.67**9.**A. Selberg,*Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series*, J. Indian Math. Soc. (N.S.)**20**(1956), 47–87. MR**0088511****10.**Dennis Sullivan,*The density at infinity of a discrete group of hyperbolic motions*, Inst. Hautes Études Sci. Publ. Math.**50**(1979), 171–202. MR**556586****11.**Pekka Tukia,*The Hausdorff dimension of the limit set of a geometrically finite Kleinian group*, Acta Math.**152**(1984), no. 1-2, 127–140. MR**736215**, 10.1007/BF02392194

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
11F72

Retrieve articles in all journals with MSC (1991): 11F72

Additional Information

**N. Mandouvalos**

Affiliation:
Department of Mathematics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

DOI:
https://doi.org/10.1090/S0002-9947-98-01803-0

Received by editor(s):
August 1, 1995

Received by editor(s) in revised form:
December 28, 1995

Article copyright:
© Copyright 1998
American Mathematical Society