Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The approximate functional formula for the theta function and Diophantine Gauss sums


Authors: E. A. Coutsias and N. D. Kazarinoff
Journal: Trans. Amer. Math. Soc. 350 (1998), 615-641
MSC (1991): Primary 11G10; Secondary 11L05, 11L07, 11J25, 11J70
DOI: https://doi.org/10.1090/S0002-9947-98-02024-8
MathSciNet review: 1443869
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the polygonal lines in the complex plane $\Bbb{C}$ whose $N$-th vertex is defined by $S_N = \sum _{n=0}^{N\,'} \exp(i\omega \pi n^2) $ (with $\omega \in \Bbb{R}$), where the prime means that the first and last terms in the sum are halved. By introducing the discrete curvature of the polygonal line, and by exploiting the similarity of segments of the line, for small $\omega$, to Cornu spirals (C-spirals), we prove the precise renormalization formula

\begin{equation}\begin{split} &\left| \sum _{k=0}^{N}\,' \exp(i\omega \pi k^2) -\frac{\exp(sgn(\omega )i\pi /4)}{\sqrt{|\omega |}} \sum _{k=0}^n \,' \exp(-i\frac{\pi}{\omega} k^2)\right|\\ &\qquad\leq C \left|\frac{\omega N - n}{\omega}\right|,\ \ 0<|\omega | <1, \end{split} \end{equation}

where $N=[[n/\omega]]$, the nearest integer to $n/\omega$ and $1<C<3.14$ . This formula, which sharpens Hardy and Littlewood's approximate functional formula for the theta function, generalizes to irrationals, as a Diophantine inequality, the well-known sum formula of Gauss. The geometrical meaning of the relation between the two limits is that the first sum is taken to a point of inflection of the corresponding C-spirals. The second sum replaces whole C-spirals of the first by unit vectors times scale and phase factors. The block renormalization procedure implied by this replacement is governed by the circle map

\begin{equation}\omega \rightarrow -\frac{1}{\omega}\ \pmod 2 \ ,\ \omega \in\ ]-1,+1[\ \setminus \{0\}, \end{equation}

whose orbits are analyzed by expressing $\omega$ as an even continued fraction.


References [Enhancements On Off] (What's this?)

  • 1. T.M. Apostol, Introduction to Analytic Number Theory, 2nd printing, Springer, NY (1984). MR 55:7892 (1st printing)
  • 2. M.V. Berry and J. Goldberg, Renormalization of curlicues, Nonlinearity \underline{1}, (1988), 1-26. MR 89b:58105
  • 3. M.V. Berry, Random renormalization in the semiclassical long time limit of a precessing spin, Physica D \underline{33} (1988), 26-33. MR 90c:81063
  • 4. J.L. Callot and M. Diener, ``Variations en spirale'', Document du travail 6, p. 16-50, Oran, 1984.
  • 5. K. Chandrasekharan, Elliptic Functions, Grundlehren der Math. Wissenschaften, \underline{281}, Springer-Verlag, Berlin, 1985. MR 87e:11058
  • 6. J.G. van der Corput, Über Summen die mit den Elliptischen $\theta$-Funktionen zusammenhägen, I, II, Math. Ann. 87, (1922), 66-77; 90, (1923), 1-18.
  • 7. J.G. van der Corput, Beweis einer approximativen Funktionalgleichung, Mathematische Zeitschrift, 28 (1928) 238-300.
  • 8. E. A. Coutsias and N. D. Kazarinoff, Disorder, renormalisability, theta functions and Cornu spirals, Physica D\underline{26}, (1987) 295-310. MR 88h:11056
  • 9. T. M. Dekking and M. Mendes-France, Uniform distributions modulo one: a geometric viewpoint, J. für die reine und angewandte Math., \underline{329} (1981), 143-153. MR 83b:10062
  • 10. J. M. Deshouillers, Geometric aspect of Weyl sums, Elementary and Analytic Theory of Numbers, p. 75-82, PWN, Warsaw 1985. MR 88d:11069
  • 11. G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation, Acta Math. \underline{37}, (1914), 193-238.
  • 12. P. Henrici, Applied and Computational Complex Analysis, Vol. 2, Wiley, New York (1977). MR 56:12235
  • 13. J. B. Keller and C. Knessl, Asymptotic evaluation of oscillatory sums, European J. Appl. Math. 4 (1993), 361-379. MR 95f:11081
  • 14. N. M. Korobov, Exponential Sums and their Applications, Mathematics and its Applications (Soviet Series), \underline{80}, Kluwer Academic Publishers, Boston, (1992). MR 93a:11068
  • 15. L. Kronecker, Summierung der Gaussschen Reihen $\sum _{h=0}^{h=n-1}e^{2h^2\pi i/n}$, Journal für die reine und angewandte Mathematik, \underline{105}(1889), 267-268.
  • 16. D. H. Lehmer, Incomplete Gauss Sums, Mathematica, \underline{23} (1976), 125-135. MR 55:2797
  • 17. J.H. Loxton, The graphs of exponential sums, Mathematika, \underline{30}(1983), 153-163. MR 85h:11045
  • 18. M. Mendes-France, The Planck constant of a curve, in Fractal Geometry and Analysis, p. 325-366, Bélair and Dubuc, eds., Kluwer Academic, (1991). MR 92f:58002
  • 19. H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS \underline{84}, American Mathematical Society, (1994). MR 96i:11002
  • 20. R. R. Moore and A. J. van der Poorten, On the thermodynamics of curves and other curlicues, in Miniconference on Geometry and Physics (Canberra 1989), M. N. Barber and M. K. Murray, eds., Proceedings of the Center of Mathematical Analysis, Australian Nat. Univ., vol. \underline{22}, (1989), p.82-109. MR 91d:11168
  • 21. L.J. Mordell, The approximate functional formula for the theta function, J. London Mat. Soc. \underline{1}(1926) 68-72.
  • 22. I.M. Vinogradov, The Method of Trigonometric Sums in the Theory of Numbers, translated from the Russian, revised and annotated by K.F. Roth and A. Davenport (Interscience, London, 1954). MR 15:941b
  • 23. J. R. Wilton, The approximate functional formula for the theta function, J. London Math. Soc. \underline{2} (1926), 177-180.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11G10, 11L05, 11L07, 11J25, 11J70

Retrieve articles in all journals with MSC (1991): 11G10, 11L05, 11L07, 11J25, 11J70


Additional Information

E. A. Coutsias
Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
Email: vageli@math.unm.edu

N. D. Kazarinoff
Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131

DOI: https://doi.org/10.1090/S0002-9947-98-02024-8
Received by editor(s): January 25, 1995
Received by editor(s) in revised form: December 4, 1995
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society