Bilinear operators on Herz-type Hardy spaces

Authors:
Loukas Grafakos, Xinwei Li and Dachun Yang

Journal:
Trans. Amer. Math. Soc. **350** (1998), 1249-1275

MSC (1991):
Primary 47H19, 42B20, 42B30

MathSciNet review:
1407489

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on are bounded from into if and only if they have vanishing moments up to a certain order dictated by the target space. Here are homogeneous Herz-type Hardy spaces with and . As an application they obtain that the commutator of a Calderón-Zygmund operator with a BMO function maps a Herz space into itself.

**[1]**A. Baernstein II and E. T. Sawyer,*Embedding and multiplier theorems for 𝐻^{𝑃}(𝑅ⁿ)*, Mem. Amer. Math. Soc.**53**(1985), no. 318, iv+82. MR**776176**, 10.1090/memo/0318**[2]**G. K. Privalova and L. A. Saran,*On the theory of conformal mappings of a circular annulus*, Dopovidi Akad. Nauk Ukraïn. RSR**1964**(1964), 303–308 (Ukrainian, with Russian and English summaries). MR**0176046****[3]**Yong Zhuo Chen and Ka-Sing Lau,*Some new classes of Hardy spaces*, J. Funct. Anal.**84**(1989), no. 2, 255–278. MR**1001460**, 10.1016/0022-1236(89)90097-9**[4]**Ronald R. Coifman and Loukas Grafakos,*Hardy space estimates for multilinear operators. I*, Rev. Mat. Iberoamericana**8**(1992), no. 1, 45–67. MR**1178448**, 10.4171/RMI/116**[5]**R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes,*Compensated compactness and Hardy spaces*, J. Math. Pures Appl. (9)**72**(1993), no. 3, 247–286 (English, with English and French summaries). MR**1225511****[6]**R. R. Coifman, R. Rochberg, and Guido Weiss,*Factorization theorems for Hardy spaces in several variables*, Ann. of Math. (2)**103**(1976), no. 3, 611–635. MR**0412721****[7]**C. Fefferman and E. M. Stein,*𝐻^{𝑝} spaces of several variables*, Acta Math.**129**(1972), no. 3-4, 137–193. MR**0447953****[8]**Hans G. Feichtinger,*An elementary approach to Wiener’s third Tauberian theorem for the Euclidean 𝑛-space*, Symposia Mathematica, Vol. XXIX (Cortona, 1984) Sympos. Math., XXIX, Academic Press, New York, 1987, pp. 267–301. MR**951188****[9]**T. M. Flett,*Some elementary inequalities for integrals with applications to Fourier transforms*, Proc. London Math. Soc. (3)**29**(1974), 538–556. MR**0360959****[10]**José García-Cuerva,*Hardy spaces and Beurling algebras*, J. London Math. Soc. (2)**39**(1989), no. 3, 499–513. MR**1002462**, 10.1112/jlms/s2-39.3.499**[11]**José García-Cuerva and María-Jesús L. Herrero,*A theory of Hardy spaces associated to the Herz spaces*, Proc. London Math. Soc. (3)**69**(1994), no. 3, 605–628. MR**1289865**, 10.1112/plms/s3-69.3.605**[12]**Loukas Grafakos,*Hardy space estimates for multilinear operators. II*, Rev. Mat. Iberoamericana**8**(1992), no. 1, 69–92. MR**1178449**, 10.4171/RMI/117**[13]**L. Grafakos and X. Li,*Bilinear operators on homogeneous groups*, submitted.**[14]**E. Hernández and D. Yang,*Interpolation of Herz-type spaces and applications*, submitted.**[15]**M. Masubuchi, T. Sekiguchi, H. Kanoh, Y. Kawashima, and W. Matsui,*Determination of the unique optimal trajectories in the second order optimal control systems*, Automatic and remote control III (Proc. Third Congr. Internat. Federation Automat. Control (IFAC), London, 1966) Inst. Mech. Engrs., London, 1967, pp. 8. MR**0438210****[16]**X. Li and D. Yang,*Boundedness of some sublinear operators on Herz spaces*, To appear in Illinois Journal of Math.**[17]**Shan Zhen Lu and Fernando Soria,*On the Herz spaces with power weights*, Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992) Stud. Adv. Math., CRC, Boca Raton, FL, 1995, pp. 227–236. MR**1330243****[18]**Shan Zhen Lu and Da Chun Yang,*The Littlewood-Paley function and 𝜑-transform characterizations of a new Hardy space 𝐻𝐾₂ associated with the Herz space*, Studia Math.**101**(1992), no. 3, 285–298. MR**1153785****[19]**Shan Zhen Lu and Da Chun Yang,*Some Hardy spaces associated with the Herz spaces and their wavelet characterizations*, Beijing Shifan Daxue Xuebao**29**(1993), no. 1, 10–19 (Chinese, with English and Chinese summaries). MR**1259381****[20]**Shan Zhen Lu and Da Chun Yang,*The local versions of 𝐻^{𝑝}(𝑅ⁿ) spaces at the origin*, Studia Math.**116**(1995), no. 2, 103–131. MR**1354135****[21]**Shan Zhen Lu and Da Chun Yang,*The decomposition of weighted Herz space on 𝐑ⁿ and its applications*, Sci. China Ser. A**38**(1995), no. 2, 147–158. MR**1338138****[22]**Shan Zhen Lu and Da Chun Yang,*The weighted Herz-type Hardy space and its applications*, Sci. China Ser. A**38**(1995), no. 6, 662–673. MR**1351232****[23]**S. Lu and D. Yang,*Some characterizations of weighted Herz-type Hardy spaces and its applications*, To appear in Acta Math. Sinica.**[24]**Shan Zhen Lu and Da Chun Yang,*Oscillatory singular integrals on Hardy spaces associated with Herz spaces*, Proc. Amer. Math. Soc.**123**(1995), no. 6, 1695–1701. MR**1239800**, 10.1090/S0002-9939-1995-1239800-5**[25]**S. Lu and D. Yang,*Regularity of non-linear quantities in compensated compactness theory on Herz-type spaces*, submitted.**[26]**Shan Zhen Lu and Da Chun Yang,*The molecular characterization of new Hardy 𝐻𝐴^{𝑝}(𝑅ⁿ) spaces and some application*, Beijing Shifan Daxue Xuebao**27**(1991), no. 2, 135–145 (English, with Chinese summary). MR**1142463****[27]**Da Chun Yang,*Real-variable characterizations of the Hardy spaces 𝐻𝐾_{𝑝}(𝐑ⁿ)*, Adv. in Math. (China)**24**(1995), no. 1, 63–73 (Chinese, with English and Chinese summaries). MR**1334605****[28]**Mitchell H. Taibleson and Guido Weiss,*The molecular characterization of Hardy spaces*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 281–287. MR**545267**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
47H19,
42B20,
42B30

Retrieve articles in all journals with MSC (1991): 47H19, 42B20, 42B30

Additional Information

**Loukas Grafakos**

Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211-0001

Email:
loukas@math.missouri.edu

**Xinwei Li**

Affiliation:
Department of Mathematics, Washington University, Campus Box 1146, St. Louis, Missouri 63130-4899

Email:
li@math.wustl.edu

**Dachun Yang**

Affiliation:
Department of Mathematics, Beijing Normal University, 100875 Beijing, The People’s Republic of China

Email:
dcyang@bnu.edu.cn

DOI:
https://doi.org/10.1090/S0002-9947-98-01878-9

Keywords:
Herz spaces,
Beurling algebras,
Hardy spaces,
atoms,
bilinear operators,
Calder\'{o}n-Zygmund operators

Received by editor(s):
January 15, 1996

Received by editor(s) in revised form:
July 15, 1996

Additional Notes:
The first author’s research was supported by the University of Missouri Research Board

Article copyright:
© Copyright 1998
American Mathematical Society