Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A new degree bound for vector invariants
of symmetric groups


Author: P. Fleischmann
Journal: Trans. Amer. Math. Soc. 350 (1998), 1703-1712
MSC (1991): Primary 13A50
MathSciNet review: 1451600
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $R$ be a commutative ring, $V$ a finitely generated free $R$-module and $G\le GL_R(V)$ a finite group acting naturally on the graded symmetric algebra $A=S(V)$. Let $\beta(V,G)$ denote the minimal number $m$, such that the ring $A^G$ of invariants can be generated by finitely many elements of degree at most $m$.

For $G=\Sigma _n$ and $V(n,k)$, the $k$-fold direct sum of the natural permutation module, one knows that $\beta(V(n,k),\Sigma _n) \le n$, provided that $n!$ is invertible in $ R$. This was used by E. Noether to prove $\beta(V,G) \le |G|$ if $|G|! \in R^*$.

In this paper we prove $\beta(V(n,k),\Sigma _n) \le max\{n,k(n-1)\}$ for arbitrary commutative rings $R$ and show equality for $n=p^s$ a prime power and $R = \mathbb Z$ or any ring with $n\cdot 1_R=0$. Our results imply

\begin{equation*}\beta(V,G)\le max\{|G|, \operatorname{rank}(V)(|G|-1)\}\end{equation*}

for any ring with $|G| \in R^*$.


References [Enhancements On Off] (What's this?)

  • 1. H. E. A. Campbell, I. Hughes, and R. D. Pollack, Vector invariants of symmetric groups, Canad. Math. Bull. 33 (1990), no. 4, 391–397. MR 1091341, 10.4153/CMB-1990-064-8
  • 2. Shou-Jen Hu and Ming-chang Kang, Efficient generation of the ring of invariants, J. Algebra 180 (1996), no. 2, 341–363. MR 1378534, 10.1006/jabr.1996.0071
  • 3. E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77, 89-92, (1916).
  • 4. E. Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik $p$, Nachr. Ges. Wiss. Göttingen (1926), 28-35; reprinted in `Collected Papers', pp. 485-492, Springer Verlag, Berlin (1983).
  • 5. D. Richman, Explicit generators of the invariants of finite groups, Adv. Math. 124 (1996), 49-76. CMP 97:05
  • 6. Larry Smith, E. Noether’s bound in the invariant theory of finite groups, Arch. Math. (Basel) 66 (1996), no. 2, 89–92. MR 1367149, 10.1007/BF01273338
  • 7. Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328644
  • 8. Hermann Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939. MR 0000255

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 13A50

Retrieve articles in all journals with MSC (1991): 13A50


Additional Information

P. Fleischmann
Affiliation: Institute for Experimental Mathematics, University of Essen, Ellernstr. 29, 45326 Essen, Germany
Email: peter@exp-math.uni-essen.de

DOI: http://dx.doi.org/10.1090/S0002-9947-98-02064-9
Received by editor(s): June 20, 1996
Article copyright: © Copyright 1998 American Mathematical Society