Linearization, Dold-Puppe stabilization,

and Mac Lane's -construction

Authors:
Brenda Johnson and Randy McCarthy

Journal:
Trans. Amer. Math. Soc. **350** (1998), 1555-1593

MSC (1991):
Primary 18G99, 18E25, 55P65, 55U99

MathSciNet review:
1451606

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study linear functors, i.e., functors of chain complexes of modules which preserve direct sums up to quasi-isomorphism, in order to lay the foundation for a further study of the Goodwillie calculus in this setting. We compare the methods of Dold and Puppe, Mac Lane, and Goodwillie for producing linear approximations to functors, and establish conditions under which these methods are equivalent. In addition, we classify linear functors in terms of modules over an explicit differential graded algebra. Several classical results involving Dold-Puppe stabilization and Mac Lane's -construction are extended or given new proofs.

**[D]**Albrecht Dold,*Homology of symmetric products and other functors of complexes*, Ann. of Math. (2)**68**(1958), 54–80. MR**0097057****[D-P]**Albrecht Dold and Dieter Puppe,*Homologie nicht-additiver Funktoren. Anwendungen*, Ann. Inst. Fourier Grenoble**11**(1961), 201–312 (German, with French summary). MR**0150183****[E]**Samuel Eilenberg,*Abstract description of some basic functors*, J. Indian Math. Soc. (N.S.)**24**(1960), 231–234 (1961). MR**0125148****[E-M1]**Samuel Eilenberg and Saunders MacLane,*Homology theories for multiplicative systems*, Trans. Amer. Math. Soc.**71**(1951), 294–330. MR**0043774**, 10.1090/S0002-9947-1951-0043774-8**[E-M2]**Samuel Eilenberg and Saunders Mac Lane,*On the groups 𝐻(Π,𝑛). II. Methods of computation*, Ann. of Math. (2)**60**(1954), 49–139. MR**0065162****[E-Z]**Samuel Eilenberg and J. A. Zilber,*Semi-simplicial complexes and singular homology*, Ann. of Math. (2)**51**(1950), 499–513. MR**0035434****[G1]**Thomas G. Goodwillie,*Calculus. I. The first derivative of pseudoisotopy theory*, 𝐾-Theory**4**(1990), no. 1, 1–27. MR**1076523**, 10.1007/BF00534191**[G2]**Thomas G. Goodwillie,*Calculus. II. Analytic functors*, 𝐾-Theory**5**(1991/92), no. 4, 295–332. MR**1162445**, 10.1007/BF00535644**[G3]**T.G. Goodwillie,*Calculus III: The Taylor series of a homotopy functor,*-Theory (to appear).**[J-P]**Mamuka Jibladze and Teimuraz Pirashvili,*Cohomology of algebraic theories*, J. Algebra**137**(1991), no. 2, 253–296. MR**1094244**, 10.1016/0021-8693(91)90093-N**[J-M1]**B. Johnson and R. McCarthy,*Taylor series for functors of additive categories,*in preparation.**[J-M2]**B. Johnson and R. McCarthy,*A classification of polynomial functors,*in preparation.**[K]**Daniel M. Kan,*Functors involving c.s.s. complexes*, Trans. Amer. Math. Soc.**87**(1958), 330–346. MR**0131873**, 10.1090/S0002-9947-1958-0131873-8**[M1]**S. Mac Lane,*Homology,*Springer-Verlag, Berlin, 1975. MR**28:122 (1st ed.)****[M2]**Saunders Mac Lane,*Homologie des anneaux et des modules*, Colloque de topologie algébrique, Louvain, 1956, Georges Thone, Liège; Masson & Cie, Paris, 1957, pp. 55–80 (French). MR**0094374****[Ma]**J. Peter May,*Simplicial objects in algebraic topology*, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0222892****[P1]**T. I. Pirashvili,*A spectral sequence of an epimorphism. III. Dold-Puppe derived functors*, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR**83**(1986), 76–87 (Russian, with English summary). MR**881046****[P2]**Teimuraz Pirashvili,*Polynomial approximation of 𝐸𝑥𝑡 and 𝑇𝑜𝑟 groups in functor categories*, Comm. Algebra**21**(1993), no. 5, 1705–1719. MR**1213983**, 10.1080/00927879308824647**[Q]**Daniel G. Quillen,*Homotopical algebra*, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR**0223432****[S]**Daniel Simson,*Stable derived functors of the second symmetric power functor, second exterior power functor and Whitehead gamma functor*, Colloq. Math.**32**(1974), 49–55. MR**0357552****[S-T]**Daniel Simson and Andrzej Tyc,*Connected sequences of stable derived functors and their applications*, Dissertationes Math. (Rozprawy Mat.)**111**(1974), 67. MR**0377861****[W]**Charles E. Watts,*Intrinsic characterizations of some additive functors*, Proc. Amer. Math. Soc.**11**(1960), 5–8. MR**0118757**, 10.1090/S0002-9939-1960-0118757-0**[We]**Charles A. Weibel,*An introduction to homological algebra*, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR**1269324****[GW]**George W. Whitehead,*On the homology suspension*, Ann. of Math. (2)**62**(1955), 254–268. MR**0073989****[Wh]**J. H. C. Whitehead,*A certain exact sequence*, Ann. of Math. (2)**52**(1950), 51–110. MR**0035997**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
18G99,
18E25,
55P65,
55U99

Retrieve articles in all journals with MSC (1991): 18G99, 18E25, 55P65, 55U99

Additional Information

**Brenda Johnson**

Affiliation:
Department of Mathematics, Union College, Schenectady, New York 12308

Email:
johnsonb@union.edu

**Randy McCarthy**

Affiliation:
Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Email:
randy@math.uiuc.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-98-02067-4

Received by editor(s):
July 16, 1996

Additional Notes:
This work was supported by National Science Foundation grant # 1-5-30943.

Article copyright:
© Copyright 1998
American Mathematical Society