Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Geometric families of constant reductions
and the Skolem property


Author: Barry Green
Journal: Trans. Amer. Math. Soc. 350 (1998), 1379-1393
MSC (1991): Primary 11G30, 11R58, 12J10, 14G25
DOI: https://doi.org/10.1090/S0002-9947-98-02094-7
MathSciNet review: 1458302
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $F|K$ be a function field in one variable and $\mathcal V$ be a family of independent valuations of the constant field $K.$ Given $v\in \mathcal V ,$ a valuation prolongation $\mathrm v$ to $F$ is called a constant reduction if the residue fields $F\mathrm v |Kv$ again form a function field of one variable. Suppose $t\in F$ is a non-constant function, and for each $v\in \mathcal V $ let $V_{t}$ be the set of all prolongations of the Gauß valuation $v_{t}$ on $K(t)$ to $F.$ The union of the sets $V_{t}$ over all $v\in \mathcal V $ is denoted by ${{\mathchoice {{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\textstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}{{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\textstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}} {{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\scriptstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}{{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\scriptscriptstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}}}_{\!t}.$

The aim of this paper is to study families of constant reductions ${{\mathchoice {{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\textstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}{{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\textstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}} {{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\scriptstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}{{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\scriptscriptstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}}}$ of $F$ prolonging the valuations of $\mathcal V $ and the criterion for them to be principal, that is to be sets of the type ${{\mathchoice {{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\textstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}{{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\textstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}} {{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\scriptstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}{{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\scriptscriptstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}}}_{\!t}.$ The main result we prove is that if either $\mathcal V $ is finite and each $v\in \mathcal V $ has rational rank one and residue field algebraic over a finite field, or if $\mathcal V $ is any set of non-archimedean valuations of a global field $K$ satisfying the strong approximation property, then each geometric family of constant reductions ${{\mathchoice {{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\textstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}{{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\textstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}} {{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\scriptstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}{{\hbox {{\mathsurround =0pt{\setbox 0=\hbox {${\scriptscriptstyle {V}}$}\setbox 1=\hbox {\hbox to.1pt{}\copy 0}\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1\kern -\wd 0\copy 1}}}}}} }$ prolonging $\mathcal V $ is principal. We also relate this result to the Skolem property for the existence of $\mathcal V $-integral points on varieties over $K,$ and Rumely's existence theorem. As an application we give a birational characterization of arithmetic surfaces $\mathcal X /S$ in terms of the generic points of the closed fibre. The characterization we give implies the existence of finite morphisms to $\mathbb P ^{1}_{S}.$


References [Enhancements On Off] (What's this?)

  • [C-R] D. Cantor, P. Roquette, On diophantine equations over the ring of all algebraic integers, J. Number Theory 18 (1984), 1-26. MR 85i:11036
  • [G] B. Green, On curves over valuation rings and morphisms to ${{\mathbb P}}^{1}$, J. Number Theory 59 (1996), 262-290. MR 97g:14024
  • [G-M--P 1] B. Green, M. Matignon, F. Pop, On valued function fields I, Manuscripta Math. 65 (1989), 257-276. MR 91g:12010
  • [G-M--P 2] -, On valued function fields II, Regular functions and elements with the uniqueness property, J. reine angew.Math. 412 (1990), 128-149. MR 92e:12008
  • [G-M--P 3] -, On valued function fields III, Reductions of algebraic curves, J. reine angew. Math. 432 (1992), 117-133. MR 94f:12004
  • [G-M--P 4] -, On the Local Skolem Property, J. reine angew. Math. 458 (1995), 183-199. MR 95k:12012
  • [G-P--R] B. Green, F. Pop, P. Roquette, On Rumely's Local-Global Principle, Jber. d. Dt. Math.-Verein 97 (1995), 43-74. MR 96g:11065
  • [Grif] M. Griffin, Rings of Krull type, J. reine angew. Math. 229 (1968), 1-27. MR 36:3778
  • [M-O 1] M. Matignon, J. Ohm, A structure theorem for simple transcendental extensions of valued fields, Proc. Amer. Math. Soc. 104 (1988), 392-402. MR 90h:12011
  • [M-O 2] -, Simple transcendental extensions of valued fields III: The uniqueness property, J. Math. Kyoto Univ. 30-2 (1990), 347-365. MR 91i:12017
  • [M-B] L. Moret-Bailly, Groupes de Picard et problèmes de Skolem I, II, Ann. Scient. Éc. Norm. Sup. 22 (1989), 161-179, 181-194. MR 90i:11065
  • [P1] F. Pop, On the Galois Theory of function fields of one variable over number fields, J. reine angew. Math. 406 (1990), 200-218. MR 92d:11127
  • [P2] -, On Grothendieck's conjecture of birational anabelian geometry, Ann. of Math. 138 (1994), 145-182. MR 94m:12007
  • [R1] P. Roquette, Zur Theorie der Konstantenreduktion algebraischer Mannigfaltigkeiten, J. reine angew. Math. 200 (1958), 1-44. MR 20:4560
  • [R2] -, Solving diophantine equations over the ring of all algebraic integers, Atas de $\!8^{\text{\rm e}}$ Escola de Algebra, Vol. 2, IMPA 84.
  • [R3] -, Reciprocity in valued function fields, J.reine angew. Math. 375/376 (1987), 238-258. MR 88f:11058
  • [Ru1] R. S. Rumely, Arithmetic over the ring of all algebraic integers, J. reine angew. Math. 368 (1986), 127-133. MR 87i:11041
  • [Ru2] -, Capacity Theory on Algebraic Curves, Springer-Verlag, Lecture Notes in Mathematics 1378, 1989. MR 91b:14018

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11G30, 11R58, 12J10, 14G25

Retrieve articles in all journals with MSC (1991): 11G30, 11R58, 12J10, 14G25


Additional Information

Barry Green
Affiliation: Department of Mathematics, University of Stellenbosch, Stellenbosch 7602, South Africa
Email: bwg@land.sun.ac.za

DOI: https://doi.org/10.1090/S0002-9947-98-02094-7
Received by editor(s): December 5, 1995
Additional Notes: This paper is part of the author’s Habilitation Thesis, University of Heidelberg, January 1995. The author would like to thank the Deutsche Forschungsgemeinschaft and the University of Heidelberg for supporting this work.
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society