Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The behavior of the heat operator
on weighted Sobolev spaces


Authors: G. N. Hile and C. P. Mawata
Journal: Trans. Amer. Math. Soc. 350 (1998), 1407-1428
MSC (1991): Primary 35B45; Secondary 35A05, 35J60
DOI: https://doi.org/10.1090/S0002-9947-98-02140-0
MathSciNet review: 1467466
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Denoting by ${\mathcal{H}}$ the heat operator in $R^{n+1}$, we investigate its properties as a bounded operator from one weighted Sobolev space to another. Our main result gives conditions on the weights under which ${\mathcal{H}}$ is an injection, a surjection, or an isomorphism. We also describe the range and kernel of ${\mathcal{H}}$ in all the cases. Our results are analogous to those obtained by R. C. McOwen for the Laplace operator in $R^{n}$.


References [Enhancements On Off] (What's this?)

  • 1. H. Begehr and G. N. Hile, Schauder estimates and existence theory for entire solutions of linear elliptic equations, Proc. of Royal Soc. Edinburgh 110A (1988), 101-123. MR 90a:35004
  • 2. M. Cantor, Spaces of functions with asymptotic conditions on $\mathbb R^{n}$, Indiana Univ. Math. J. 24 (1975), 897-902. MR 51:1873
  • 3. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. MR 31:6062
  • 4. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983. MR 86c:35035
  • 5. G. N. Hile and C. P. Mawata, Liouville theorems for nonlinear elliptic equations of second order, Partial Differential Equations with Real Analysis, Pitman Research Notes in Math. (H. Begehr and A Jeffrey, eds.) 263 (1992), 57-92. MR 93m:35016
  • 6. G. N. Hile and C. P. Mawata, Liouville theorems for nonlinear parabolic equations of second order, Differential and Integral Equations 9 (1) (1996), 149-172. MR 96k:35085
  • 7. T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1976. MR 53:11389
  • 8. R. B. Lockhart, Fredholm properties of a class of elliptic operators on non-compact manifolds, Duke Math. J. 48 (1981), 289-312. MR 82j:35050
  • 9. R. B. Lockhart and R. C. McOwen, On elliptic systems in $\mathbb R^{n}$, Acta Math. 150 (1983), 125-135; 153 (1984), 303-304. MR 84d: 35048; MR 86a:35049
  • 10. C. P. Mawata, Schauder estimates and existence theory for entire solutions of linear parabolic equations, Differential and Integral Equations 2 (3) (1989), 251-274. MR 90i:35024
  • 11. R. C. McOwen, Behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math. 32 (1979), 783-795. MR 81m:47069
  • 12. R. C. McOwen, On elliptic operators in $\mathbb R^{n}$, Comm. Partial Differential Equations 5 (1980), 913-933. MR 84k:35058
  • 13. L. Nirenberg and H. F. Walker, The null spaces of elliptic partial differential operators in $\mathbb R^{n}$, J. Math. Anal. Appl. 42 (1973), 271-301. MR 47:9354
  • 14. H. F. Walker, On the null-spaces of first order elliptic partial differential operators in $\mathbb R^{n}$, Proc. Amer. Math. Soc. 30 (1971), 278-286. MR 43:6583
  • 15. H. F. Walker, On the null-spaces of elliptic partial differential operators in $\mathbb R^{n}$, Trans. Amer. Math. Soc. 173 (1972), 263-275. MR 46:7972
  • 16. D. V. Widder, The Heat Equation, Academic Press, New York, San Francisco, London, 1975. MR 57:6840
  • 17. D. V. Widder, Series expansions of solutions of the heat equation in $n$ dimensions, Ann. Mat. Pura Appl. 55 (1961), 389-409. MR 25:331

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35B45, 35A05, 35J60

Retrieve articles in all journals with MSC (1991): 35B45, 35A05, 35J60


Additional Information

G. N. Hile
Affiliation: University of Hawaii, Manoa, 2565 The Mall, Honolulu, Hawaii 96822
Email: hile@math.hawaii.edu

C. P. Mawata
Affiliation: University of Tennessee, Chattanooga, 615 McCallie Avenue, Chattanooga, Tennessee 37403
Email: cmawata@cecasun.utc.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02140-0
Received by editor(s): April 12, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society