The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).


Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Carleson conditions for asymptotic weights

Author: Michael Brian Korey
Journal: Trans. Amer. Math. Soc. 350 (1998), 2049-2069
MSC (1991): Primary 42B25; Secondary 26D15, 31B35
MathSciNet review: 1422902
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The doubling and $A_\infty$ conditions are characterized in terms of convolution with rapidly decreasing kernels. The Carleson-measure criterion for $A_\infty$ of Fefferman, Kenig, and Pipher is extended to the case when all bounds become optimally small in the asymptotic limit.

References [Enhancements On Off] (What's this?)

  • 1. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Math., vol. 82, Springer-Verlag, Berlin, Heidelberg, and New York, 1982. MR 83i:57016
  • 2. S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), 253-272. MR 94a:42011
  • 3. M. Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 61 (1990), 601-628. MR 92k:42020
  • 4. R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 50:10670
  • 5. C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 56:6263
  • 6. R. Fefferman, C. E. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2) 134 (1991), 65-124. MR 93h:31010
  • 7. J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, New York, and Oxford, 1985. MR 87d:42023
  • 8. S. V. Hruscev, A description of weights satisfying the $A_\infty$ condition of Muckenhoupt, Proc. Amer. Math. Soc. 90 (1984), 253-257. MR 85k:42049
  • 9. D. Jerison and C. E. Kenig, The logarithm of the Poisson kernel for a $C^1$ domain has vanishing mean oscillation, Trans. Amer. Math. Soc. 273 (1982), 781-794. MR 83k:31004
  • 10. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 24:A1348
  • 11. M. B. Korey, Ideal weights: doubling and absolute continuity with asymptotically optimal bounds, Ph.D. Thesis, University of Chicago, 1995.
  • 12. B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106. MR 50:2790
  • 13. S. C. Power, Vanishing Carleson measures, Bull. London Math. Soc. 12 (1980), 207-210. MR 82c:30057
  • 14. H. M. Reimann and T. Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Math. 487, Springer-Verlag, Berlin, Heidelberg, and New York, 1975. MR 58:23564
  • 15. D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. MR 51:13690
  • 16. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 44:7280
  • 17. E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993. MR 95c:42002

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 42B25, 26D15, 31B35

Retrieve articles in all journals with MSC (1991): 42B25, 26D15, 31B35

Additional Information

Michael Brian Korey
Affiliation: Max-Planck-Arbeitsgruppe “Partielle Differentialgleichungen und Komplexe Analysis”, Universität Potsdam, 14415 Potsdam, Germany
Address at time of publication: Institut für Mathematik, Universität Potsdam, 14415 Potsdam, Germany

Keywords: Doubling measure, vanishing mean oscillation, $A_\infty$ condition, Carleson measure.
Received by editor(s): December 28, 1995
Received by editor(s) in revised form: September 5, 1996
Additional Notes: Supported by the Max-Planck-Gesellschaft. This work is a revised form of part of the author’s dissertation, which was written under Professor Carlos E. Kenig at the University of Chicago. Another portion of the dissertation \cite{Ko} is to appear in J. Fourier Anal. Appl.
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society