Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hyperbolic complete minimal surfaces
with arbitrary topology


Author: F. J. López
Journal: Trans. Amer. Math. Soc. 350 (1998), 1977-1990
MSC (1991): Primary 53A10; Secondary 53C42
DOI: https://doi.org/10.1090/S0002-9947-98-01932-1
MathSciNet review: 1422904
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show a method to construct orientable minimal surfaces in $\Bbb R^3$ with arbitrary topology. This procedure gives complete examples of two different kinds: surfaces whose Gauss map omits four points of the sphere and surfaces with a bounded coordinate function. We also apply these ideas to construct stable minimal surfaces with high topology which are incomplete or complete with boundary.


References [Enhancements On Off] (What's this?)

  • [BC] J.L. Barbosa and M.P. Do Carmo. On the size of a stable minimal surface in $\Bbb R^3$. Amer. J. Math., 98 (1976), 515-528. MR 54:1292
  • [B1] F. F. De Brito. Power series with Hadamard gaps and hyperbolic complete minimal surfaces. Duke Math. J., 68 (1992), N. 2, 297-300. MR 94d:53012
  • [B2] F.F. De Brito. Many-ended complete minimal surfaces between two parallel planes. Preprint.
  • [CH] S. Y. Cheng, Eigenfunctions and nodal sets, Comm. Math. Helv. 51 (1976) 43-55. MR 55:1661
  • [CS] C. Costa and P.A.Q. Simoes. Complete minimal surfaces of arbitrary genus in a slab of $\Bbb R^3$. Ann. Inst. Fourier (Grenoble) 46 (1996), 535-546. MR 97e:53015
  • [F-K] H. M. Farkas and I. Kra. Riemann surfaces. Grad. Texts in Math., 72, Springer Verlag, Berlin, 1980. MR 82c:30067
  • [FC] D. Fischer-Colbrie. On complete minimal surfaces with finite Morse index in three-manifolds. Invent. Math., 82 (1985), 121-132. MR 87b:53090
  • [FCS] D. Fischer-Colbrie and R. Schoen. The structure of complete stable minimal surfaces in $3$-manifolds of non negative scalar curvature. Comm. of Pure and Appl. Math., 33 (1980), 199-211. MR 81i:53044
  • [FU1] H. Fujimoto. On the number of exceptional values of the Gauss maps of minimal surfaces. J. Math. Soc. Japan, 40 (1988), 235-247. MR 89b:53013
  • [FU2] H. Fujimoto. Modified defect relations for the Gauss map of minimal surfaces. J. of Diff. Geom., 29 (1989), 245-262. MR 89m:53012
  • [JX1] L.P.M. Jorge and F. Xavier. A complete minimal surface in $\Bbb R^3$ between two parallel planes. Ann. of Math., 112 (1980), 203-206. MR 82e:53087
  • [L] F.J. Lopez. A nonorientable complete minimal surface in $\Bbb R^3$ between two parallel planes. Proc. Amer. Math. Soc., 103 (1988), 913-917. MR 89f:53009
  • [O] R. Osserman. A survey of minimal surfaces. Dover Publications, New York, second edition, 1986. MR 87j:53012
  • [RT] H. Rosenberg and E. Toubiana. A cylindrical type complete minimal surface in a slab of $\Bbb R^3$ . Bull. Sci. Math. 111 (1987), 241-245. MR 88k:53019
  • [V] K. Voss. Über vollständige minimalflächen. L'Enseigment Math., 10 (1964), 316-317.
  • [X] F. Xavier. The Gauss map of a complete nonflat minimal surface cannot omit 7 points of the sphere. Ann. of Math., 113 (1981), 211-214; 115 (1982), 667. MR 82b:53015; MR 83h:53016

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53A10, 53C42

Retrieve articles in all journals with MSC (1991): 53A10, 53C42


Additional Information

F. J. López
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 - Granada (Spain)
Email: fjlopez@goliat.ugr.es

DOI: https://doi.org/10.1090/S0002-9947-98-01932-1
Keywords: Minimal surfaces. Riemann surfaces.
Received by editor(s): May 20, 1996
Received by editor(s) in revised form: August 12, 1996
Additional Notes: Research partially supported by DGICYT Grant No. PB94-0796.
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society