Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A convexity theorem in the scattering theory for the Dirac operator

Author: K. L. Vaninsky
Journal: Trans. Amer. Math. Soc. 350 (1998), 1895-1911
MSC (1991): Primary 34L05, 34L25, 34L40
MathSciNet review: 1467476
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Dirac operator enters into zero curvature representation for the cubic nonlinear Schrödinger equation. We introduce and study a conformal map from the upper half-plane of the spectral parameter of the Dirac operator into itself. The action variables turn out to be limiting boundary values of the imaginary part of this map. We describe the image of the momentum map (convexity theorem) in the simplest case of a potential from the Schwartz class. We apply this description to the invariant manifolds for the nonlinear Schrödinger equation.

References [Enhancements On Off] (What's this?)

  • [AKNS] M.J. Ablowitz, D.J. Kaup, A.C. Newell A.C. and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249-315. MR 56:9018
  • [A] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions of Analysis, Oliver and Boyd, Edinburgh, 1965. MR 32:1518
  • [AT] M. Atiyah, Convexity and commuting Hamiltonians., Bull. London Math. Soc. 14 (1982), 1-15. MR 83e:53037
  • [BDZ] R. Beals, P. Deift and X. Zhou, The inverse scattering transform on the line, Important Developments in Soliton Theory (V.E. Zakharov, ed.), Springer-Verlag, Berlin, 1993, pp. 7-32. MR 95k:34020
  • [B] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys 52 (1929), 555-600.
  • [CL] E. Coddington and N. Levinson, Theory of Ordinary Differential Equation, McGraw-Hill, New York, 1955. MR 16:1022b
  • [FT] L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1987. MR 89m:58103
  • [F] W. Feller, Introduction to Probability Theory and its Applications, Vol. II, 2nd ed., Wiley, New York, 1971. MR 42:5292
  • [GS] V. Guillemin and S. Sternberg, Convexity property of the momentum map, Invent. Math. 67 (1982), 491-513. MR 83m:58037
  • [KO] P. Koosis, Introduction to $H^{p}$ spaces, Cambridge Univ. Press, Cambridge, 1980. MR 81c:30062
  • [K] M.G. Krein, On the theory of accelerant and S-matrices of canonical differential systems, Dokl Akad Nauk SSSR 111 (1956), 1167-1170. (Russian) MR 19:277f
  • [KMA] M.G. Krein and P.E. Melik-Adamian, A contribution to the theory of S-matrices of canonical differential equations with summable potential, Dokl. Akad Nauk Armjan. SSR 46 (1968), 150-155; English transl., M. G. Krein, Topics in differential and integral equations and operator theory, Birkhäuser, Basel, 1983, pp. 295-301. MR 53:13715; MR 86m:00014
  • [LL] L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Course in Theoretical Physics, vol. 3, Pergamon Press, Oxford, 1958.
  • [LS] B.M. Levitan and I. S. Sargsian, Sturm-Liouwille and Dirac Operators, Kluwer Academic, Dordrecht, 1991. MR 92i:34119
  • [M] A.M. Marchenko, Sturm-Liouwille Operators and Their Applications, Birkhauser, Basel, 1986. MR 88f:34034
  • [MO] V.A. Marchenko and I.V. Ostrovskii, A characterization of the spectrum of Hill's operator, Math. USSR-Sbornik 97 (1975), 493-554. MR 53:13717
  • [MC1] H.P. McKean, Compatible Brackets in Hamiltonian Mechanics, Important Developments in Soliton Theory (V.E. Zakharov and A.S. Fokas, eds.), Springer-Verlag, Berlin, Heidelberg New York, 1993, pp. 344-354. MR 95c:58097
  • [MC2] H.P. McKean, Geometry of KdV (1): Additive and the Unimodular Spectral Classes, Revista Matematica Iberoamericana 2 (1987), 235-261. MR 89b:58096
  • [MCV] H.P. McKean and K.L. Vaninsky, Action-angle variables for nonlinear Schrödinger equation, preprint, 1995.
  • [MA] P.E. Melik-Adamian, On the properties of S-matrices of canonical differential equations on the entire line, Akad. Nauk Armjan. SSR Dokl 58 (1974), 199-205. MR 50:7719
  • [V] K.L. Vaninsky, Invariant Gibbsian measures of the Klein-Gordon equation, Stochastic Analysis (M.C. Cranston and M.A. Pinsky, eds.), Proc. Sympos. Pure Math., vol. 57, American Mathematical Society, 1995, pp. 495-510. MR 96g:58115
  • [ZS] V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Phys. JETP 34 (1972), 62-69. MR 53:9966
  • [ZM] V.E.Zakharov and S.V. Manakov, On the complete integrability of the nonlinear Schrödinger equation, Theor. Math. Phys. 19 (1975), 551-560. MR 57:8636

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34L05, 34L25, 34L40

Retrieve articles in all journals with MSC (1991): 34L05, 34L25, 34L40

Additional Information

K. L. Vaninsky
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506

Keywords: Scattering theory, convexity theorem, nonlinear Schr\"{o}dinger
Received by editor(s): November 9, 1995
Received by editor(s) in revised form: June 21, 1996
Additional Notes: The author would like to thank the Institut des Hautes Études Scientifiques, where the paper was completed, for hospitality. The work is partially supported by NSF grant DMS-9501002
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society