Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Integration of singular braid invariants
and graph cohomology

Author: Michael Hutchings
Journal: Trans. Amer. Math. Soc. 350 (1998), 1791-1809
MSC (1991): Primary 57M25; Secondary 20C07
MathSciNet review: 1475686
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove necessary and sufficient conditions for an arbitrary invariant of braids with $m$ double points to be the ``$m^{th}$ derivative'' of a braid invariant. We show that the ``primary obstruction to integration'' is the only obstruction. This gives a slight generalization of the existence theorem for Vassiliev invariants of braids. We give a direct proof by induction on $m$ which works for invariants with values in any abelian group.

We find that to prove our theorem, we must show that every relation among four-term relations satisfies a certain geometric condition. To find the relations among relations we show that $H_1$ of a variant of Kontsevich's graph complex vanishes. We discuss related open questions for invariants of links and other things.

References [Enhancements On Off] (What's this?)

  • 1. D. Altschuler and L. Freidel, Vassiliev knot invariants and Chern-Simons perturbation theory to all orders, Comm. Math. Phys 187 (1997), 261-287. CMP 97:16
  • 2. V. I. Arnol′d, The Vassiliev theory of discriminants and knots, First European Congress of Mathematics, Vol. I (Paris, 1992) Progr. Math., vol. 119, Birkhäuser, Basel, 1994, pp. 3–29. MR 1341819
  • 3. Dror Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423–472. MR 1318886,
  • 4. Dror Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995), no. 1, 13–32. MR 1321289,
  • 5. D. Bar-Natan, S. Garoufalidis, L. Rozansky and D. Thurston, The øArhus invariant of rational homology 3-spheres I: a highly nontrivial flat connection on $S^3$, preprint, q-alg/9706004.
  • 6. D. Bar-Natan and A. Stoimenow, The fundamental theorem of Vassiliev invariants, Geometry and Physics (Aarhus 1995), 101-134, Lecture Notes in Pure and Appl. Math., 184, Dekker, 1997. CMP 97:05
  • 7. Joan S. Birman and Xiao-Song Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math. 111 (1993), no. 2, 225–270. MR 1198809,
  • 8. Raoul Bott and Clifford Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994), no. 10, 5247–5287. Topology and physics. MR 1295465,
  • 9. V. G. Drinfel′d, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 6, 1419–1457. MR 1047964
  • 10. S. Garoufalidis and J. Levine, On finite type 3-manifold invariants II, Math. Ann. 306 (1996), 691-718. CMP 97:03
  • 11. S. Garoufalidis and T. Ohtsuki, On finite type 3-manifold invariants III: manifold weight systems, to appear in Topology.
  • 12. A. Hatcher, private communication, 1995.
  • 13. Toshitake Kohno, Linear representations of braid groups and classical Yang-Baxter equations, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 339–363. MR 975088,
  • 14. Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 97–121. MR 1341841
  • 15. Maxim Kontsevich, Vassiliev’s knot invariants, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 137–150. MR 1237836
  • 16. T. T. Q. Le, J. Murakami and T. Ohtsuki, On a universal invariant of 3-manifolds, preprint, q-alg/9512002.
  • 17. X-S. Lin, Braid algebras, trace modules and Vassiliev invariants, Columbia University preprint, 1994.
  • 18. Tomotada Ohtsuki, Finite type invariants of integral homology 3-spheres, J. Knot Theory Ramifications 5 (1996), no. 1, 101–115. MR 1373813,
  • 19. Ted Stanford, Finite-type invariants of knots, links, and graphs, Topology 35 (1996), no. 4, 1027–1050. MR 1404922,
  • 20. A. Stoimenow, Stirling numbers, Eulerian idempotents and pure braid cohomology, preprint, 1995.
  • 21. D. Thurston, Integral expressions for the Vassiliev knot invariants, Harvard College senior thesis, 1995.
  • 22. V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by B. Goldfarb. MR 1168473
  • 23. P. Vogel, Algebraic structures on modules of diagrams, preprint, 1995.
  • 24. S. Willerton, A combinatorial half-integration from weight system to Vassiliev invariant, to appear in J. Knot Theory Ramifications.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 57M25, 20C07

Retrieve articles in all journals with MSC (1991): 57M25, 20C07

Additional Information

Michael Hutchings
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Received by editor(s): May 19, 1995
Additional Notes: Supported by a National Science Foundation Graduate Fellowship.
Article copyright: © Copyright 1998 Michael Hutchings