Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Weak*-closedness of subspaces
of Fourier-Stieltjes algebras
and weak*-continuity of the restriction map

Authors: M. B. Bekka, E. Kaniuth, A. T. Lau and G. Schlichting
Journal: Trans. Amer. Math. Soc. 350 (1998), 2277-2296
MSC (1991): Primary 22D10, 43A30
MathSciNet review: 1401762
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a locally compact group and $B(G)$ the Fourier-Stieltjes algebra of $G$. We study the problem of how weak*-closedness of some translation invariant subspaces of $B(G)$ is related to the structure of $G$. Moreover, we prove that for a closed subgroup $H$ of $G$, the restriction map from $B(G)$ to $B(H)$ is weak*-continuous only when $H$ is open in $G$.

References [Enhancements On Off] (What's this?)

  • 1. G. Arsac, Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire, Publ. Dép. Math. Lyon 13 (1976), 1-101. MR 56:3180
  • 2. L. Baggett, A separable group having a discrete dual space is compact, J. Funct. Anal. 10 (1972), 131-148. MR 49:10816
  • 3. M. B. Bekka, A. T. Lau, and G. Schlichting, On invariant subalgebras of the Fourier-Stieltjes algebra of a locally compact group, Math. Ann. 294 (1992), 513-522. MR 93k:43606
  • 4. M. B. Bekka and A. Valette, Lattices in semisimple Lie groups and multipliers of group $C^*$-algebras, Astérisque, no. 232, Soc. Math. France, 1995, pp. 67-79. MR 97a:22015
  • 5. J. Dixmier, $C^*$-algebras, Amsterdam, 1977. MR 56:16388
  • 6. J. D. Dixon, The structure of linear groups, London, 1971.
  • 7. S. Echterhoff, Crossed products with continuous trace, Memoirs Amer. Math. Soc. 123 (1996), no. 586. CMP 97:03
  • 8. P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37:4208
  • 9. J. M. G. Fell, Weak containment and induced representations. II, Trans. Amer. Math. Soc. 110 (1964), 424-447. MR 28:3114
  • 10. J. M. G. Fell and R. S. Doran, Representations of $*$-algebras, locally compact groups and Banach $*$-algebraic bundles, Vol. I, II, Boston, 1988. MR 90c:46001; MR 90c:46002
  • 11. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra $B(G)$ and of the measure algebra $M(G)$, Rocky Mountain J. Math. 11 (1981), 459-472. MR 85f:43009
  • 12. F. P. Greenleaf, Amenable actions of locally compact groups, J. Funct. Anal. 4 (1969), 295-315. MR 40:268
  • 13. P. R. Halmos, Measure theory, New York, 1950. MR 11:504d
  • 14. P. de la Harpe and A. Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts, Astérisque 175, Soc. Math. France, 1989. MR 90m:22001
  • 15. H. E. Jensen, Scattered $C^*$-algebras, Math. Scand. 41 (1977), 308-314. MR 58:2321
  • 16. E. Kaniuth, Der Typ der regulären Darstellung diskreter Gruppen, Math. Ann. 182 (1969), 334-339. MR 41:5516
  • 17. E. Kaniuth, Weak containment and tensor products of group representations. II, Math. Ann. 270 (1985), 1-15. MR 86j:22004
  • 18. E. Kaniuth, On topological Frobenius reciprocity for locally compact groups, Arch. Math. 48 (1987), 286-297. MR 89d:22082
  • 19. E. Kaniuth, On the conjugation representation of a locally compact group, Math. Z. 202 (1989), 275-288. MR 90k:22003
  • 20. E. Kaniuth and A. Markfort, The conjugation representation and inner amenability of discrete groups, J. Reine Angew. Math. 432 (1992), 23-37. MR 93m:22006
  • 21. E. Kaniuth and A. Markfort, Locally compact groups whose conjugation representations satisfy a Kazhdan type property or have countable support, Math. Proc. Camb. Phil. Soc. 116 (1994), 79-97. MR 95d:22006
  • 22. A. T. Lau and P. Mah, Normal structure in dual Banach spaces associated to locally compact groups, Trans. Amer. Math. Soc. 310 (1988), 341-353. MR 89e:43004
  • 23. A. T. Lau and A. Ülger, Some geometric properties of the Fourier and Fourier Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), 321-359. MR 93g:22007
  • 24. J. R. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85-108. MR 47:6937
  • 25. V. Losert, Properties of the Fourier algebra that are equivalent to amenability, Proc. Amer. Math. Soc. 92 (1984), 347-353. MR 86b:43010
  • 26. G. W. Mackey, Unitary representations of group extensions, Acta Math. 99 (1958), 265-311. MR 20:4789
  • 27. C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401-410. MR 46:1960
  • 28. R. D. Mosak, The $L^1$- and $C^*$-algebras of $[FIA]^-_B$ groups and their representations, Trans. Amer. Math. Soc. 163 (1972), 277-310. MR 45:2096
  • 29. A. L. T. Paterson, Amenability, Providence, Rhode Island, 1988. MR 90e:43001
  • 30. J. P. Pier, Amenable locally compact groups, New York, 1984. MR 86a:43001
  • 31. H. Reiter, Classical harmonic analysis and locally compact groups, Oxford, 1968. MR 46:5933
  • 32. K. F. Taylor, The type structure of the regular representation of a locally compact group, Math. Ann. 222 (1976), 211-224. MR 54:12965
  • 33. K. F. Taylor, Geometry of the Fourier algebras and locally compact groups with atomic unitary representations, Math. Ann. 262 (1983), 183-190. MR 84k:43020
  • 34. S. P. Wang, On isolated points in the dual spaces of locally compact groups, Math. Ann. 218 (1975), 19-34. MR 52:5863
  • 35. R. J. Zimmer, Ergodic theory and semisimple groups, Boston/Basel/New York, 1984. MR 86j:22014

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 22D10, 43A30

Retrieve articles in all journals with MSC (1991): 22D10, 43A30

Additional Information

M. B. Bekka
Affiliation: Département de Mathématiques, Université de Metz, F - 57045 Metz, France

E. Kaniuth
Affiliation: Fachbereich Mathematik/Informatik, Universität Paderborn, D - 33095 Paderborn, Germany

A. T. Lau
Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Canada T6G 2G1

G. Schlichting
Affiliation: Mathematisches Institut, Technische Universität München, D - 80290 München, Germany

Received by editor(s): December 15, 1995
Additional Notes: Work supported by NATO collaborative research grant CRG 940184
Dedicated: Dedicated to Professor Elmar Thoma on the occasion of his seventieth birthday
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society