Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Carathéodory-Toeplitz and Nehari problems
for matrix valued almost periodic functions


Authors: Leiba Rodman, Ilya M. Spitkovsky and Hugo J. Woerdeman
Journal: Trans. Amer. Math. Soc. 350 (1998), 2185-2227
MSC (1991): Primary 42A75, 26A99, 15A54, 47A68, 47A56, 47A57, 42A82, 47B35.
DOI: https://doi.org/10.1090/S0002-9947-98-01937-0
MathSciNet review: 1422908
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the positive and strictly contractive extension problems for almost periodic matrix functions are treated. We present necessary and sufficient conditions for the existence of extensions in terms of Toeplitz and Hankel operators on Besicovitch spaces and Lebesgue spaces. Furthermore, when a solution exists a special extension (the band extension) is constructed which enjoys a maximum entropy property. A linear fractional parameterization of the set of all extensions is also provided. The techniques used in the proofs include factorizations of matrix valued almost periodic functions and a general algebraic scheme called the band method.


References [Enhancements On Off] (What's this?)

  • 1. V. M. Adamjan, D. Z. Arov, and M. G. Krein. Infinite Hankel block matrices and related extension problem. Izv. Akad. Nauk SSSR. Ser. Mat., 6:87-112, 1971. English Transl.: Amer. Math. Soc. Trans. (2) 111: 133-156, 1978. MR 45:7506
  • 2. J. A. Ball, I. Gohberg, and L. Rodman. Interpolation of Rational Matrix Functions. OT45. Birkhäuser, 1990. MR 92m:47027
  • 3. D. S. Bernstein and W. M. Haddad. ${L}{Q}{C}$ control with an ${H}_\infty$ performance bound: a Riccati equation approach. IEEE Trans. Autom. Control, AC-34:293-305, 1989. MR 90h:49025
  • 4. J. P. Burg. Maximum Entropy Spectral Analysis. PhD thesis, Department of Geophysics, Stanford University, Stanford, California, 1975.
  • 5. C. Carathéodory. Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti dei Circolo Matematico di Palermo, 32:193-217, 1911.
  • 6. C. Corduneanu. Almost Periodic Functions. J. Wiley & Sons, 1968. MR 58:2006
  • 7. A. Devinatz and M. Shinbrot. General Wiener-Hopf operators. Trans. Amer. Math. Soc., 145:467-494, 1969. MR 40:4800
  • 8. J. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis. State-space solutions to standard ${H}_2$ and ${H}_\infty$ control problems. IEEE Trans. on Automatic Control, 34(8):831-847, 1989. MR 90m:93055
  • 9. H. Dym and I. Gohberg. Extensions of matrix valued functions with rational polynomial inverse. Integral Equations and Operator Theory, 2:503-528, 1979. MR 81g:47015
  • 10. H. Dym and I. Gohberg. Extensions of kernels of Fredholm operators. J. Anal. Math, 42:51-97, 1982/83. MR 86b:45002
  • 11. H. Dym and I. Gohberg. A maximum entropy principle for contractive interpolants. J. Functional Analysis, 65:83-125, 1986. MR 87h:47065
  • 12. H. Dym and I. Gohberg. A new class of contractive interpolants and maximum entropy principles. Operator Theory: Advances and Applications, 29:117-150, 1988. MR 89h:47022
  • 13. C. Foias and A. E. Frazho. The Commutant Lifting Approach to Interpolation Problems. OT44. Birkhäuser, 1990. MR 92k:47033
  • 14. A. E. Frazho and S. M. Kherat. Applications of the Schur algorithm to mixed ${H}^2$ and ${H}^\infty$ Nehari problems. J. Math. Anal. Appl., 178(2):488-508, 1993. MR 94h:47026
  • 15. A. E. Frazho and M. A. Rotea. A remark on mixed ${L}^2/{L}^\infty$ bounds. Integral Equations and Operator Theory, 15(2):343-348, 1992. MR 93b:47029
  • 16. I. Gelfand, D. Raikov, and G. Shilov. Commutative Normed Rings. Chelsea, Bronx, N.Y., 1964. MR 34:4940
  • 17. I. Gohberg, S. Goldberg, and M. A. Kaashoek. Classes of Linear Operators, II. OT63. Birkhäuser, 1993. MR 95a:47001
  • 18. I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman. The band method for positive and contractive extension problems. J. Operator Theory, 22:109-155, 1989. MR 91a:47021
  • 19. I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman. The band method for positive and contractive extension problems: An alternative version and new applications. Integral Equations and Operator Theory, 12:343-382, 1989. MR 90c:47022
  • 20. I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman. The band method for extension problems and maximum entropy. In L. Auslander, T. Kailath, and S. Mitter, editors, Signal Processing; Part I, volume 22 of The IMA Volumes in Mathematics and its Applications, New York, 1990. Springer Verlag, pp. 75-94. MR 91e:47012
  • 21. I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman. The band method for several positive extension problems of non-band type. J. Operator Theory, 26:191-218, 1991. MR 94e:47027
  • 22. I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman. A maximum entropy principle in the general framework of the band method. J. Functional Analysis, 95:231-254, 1991. MR 92b:47020
  • 23. S. Goldberg. Unbounded Linear Operators: Theory and Applications. McGraw-Hill, New York, 1966. MR 34:580
  • 24. J. W. Helton. Operator Theory, Analytic Functions, Matrices, and Electrical Engineering, volume 68 of CBMS Conference Series. American Mathematical Society, 1987. MR 89f:47001
  • 25. V. G. Kaftal, D. R. Larson, and G. Weiss. Quasitriangular subalgebras of semifinite von Neumann subalgebras are closed. J. Functional Analysis, 107:387-401, 1992. MR 93g:46060
  • 26. Yu. I. Karlovich. The local trajectory method of studying invertibility in ${C}^*$-algebras of operators with discrete groups of shifts. Soviet Math. Dokl., 37:407-412, 1988. MR 89e:46068
  • 27. Yu. I. Karlovich. Algebras of convolution type operators with discrete groups of shifts and oscillating coefficients. Doctoral dissertation, Mathematical Institute, Georgian Academy of Sciences, Tbilisi, 1991. (Russian)
  • 28. Yu. I. Karlovich and G. S. Litvinchuk. On some classes of semi-Fredholm operators. Izvestiya VUZov. Mat., (2):3-16, 1990; English transl. in Soviet Math. (Iz. VUZ). MR 91k:47122
  • 29. Yu. I. Karlovich and I. M. Spitkovsky. Semi-Fredholm properties of certain singular integral operators. In Operator Theory: Advances and Applications, vol. 90, Birkhäuser, 1996, pp. 269-287. CMP 97:02
  • 30. Yu. I. Karlovich and I. M. Spitkovsky. (Semi)-Fredholmness of convolution operators on the spaces of Bessel potentials. Operator Theory: Advances and Applications, 71:122-152, 1994. MR 95h:47034
  • 31. B. M. Levitan. Almost Periodic Functions. GITTL, Moscow, 1953. (Russian) MR 15:700a
  • 32. B. M. Levitan and V. V. Zhikov. Almost Periodic Functions and Differential Equations. Cambridge University Press, 1982. MR 84g:34004
  • 33. M. Morf, A. Vieira, and T. Kailath. Covariance characterization by partial autocorrelation matrices. Ann. Statist., 6:643-648, 1978. MR 57:17996
  • 34. M. Morf, A. Vieira, D. Lee, and T. Kailath. Recursive multichannel maximal entropy spectral estimation. IEEE Trans. Geosci. Elect., 16:85-94, 1978. MR 80e:62066
  • 35. Z. Nehari. On bounded bilinear forms. Ann. of Math., 104:570-578, 1957. MR 18:633f
  • 36. M. A. Rotea and P. P. Khargonekar. ${H}_2$-optimal control with an ${H}_\infty$-constraint, the state-feedback case. IFAC Automatica, 27:307-316, 1991. MR 92d:93058
  • 37. I. M. Spitkovsky. On the factorization of almost periodic matrix functions. Math. Notes, 45(5-6):482-488, 1989. MR 90k:47033
  • 38. I. M. Spitkovsky and H. J. Woerdeman. The Carathéodory-Toeplitz problem for almost periodic functions. J. Functional Analysis, 115(2):281-293, 1993. MR 94f:47020
  • 39. O. Toeplitz. Über die Fourier'sche Entwicklung positiven Funktionen. Rendiconti dei Circolo Matematico di Palermo, 32:1-2, 1911.
  • 40. H. J. Woerdeman. Matrix and Operator Extensions. CWI Tract 68. Centre for Mathematics and Computer Science, Amsterdam, the Netherlands, 1989. MR 91d:47001

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 42A75, 26A99, 15A54, 47A68, 47A56, 47A57, 42A82, 47B35.

Retrieve articles in all journals with MSC (1991): 42A75, 26A99, 15A54, 47A68, 47A56, 47A57, 42A82, 47B35.


Additional Information

Leiba Rodman
Affiliation: Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187-8795
Email: lxrodm@math.wm.edu

Ilya M. Spitkovsky
Affiliation: Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187-8795
Email: ilya@math.wm.edu

Hugo J. Woerdeman
Affiliation: Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187-8795
Email: hugo@math.wm.edu

DOI: https://doi.org/10.1090/S0002-9947-98-01937-0
Keywords: Almost periodic matrix functions, contractive extensions, positive extensions, canonical factorization, Besicovitch space, Hankel operators, Toeplitz operators, band method.
Received by editor(s): April 29, 1996
Received by editor(s) in revised form: September 18, 1996
Additional Notes: The research is partially supported by NSF Grants 9500924 (LR, HJW) and 9401848 (IMS). The research of IMS was also supported by a semester research grant from the College of William & Mary
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society