Fixed point sets of deformations of polyhedra with local cut points
Author:
Peter Wolfenden
Journal:
Trans. Amer. Math. Soc. 350 (1998), 24572471
MSC (1991):
Primary 54C99; Secondary 05C90
MathSciNet review:
1422912
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A locally finite simplicial complex is said to be 2dimensionally connected if is connected. Such spaces exhibit ``classical'' behavior in that they all admit deformations with one fixed point, and they admit fixed point free deformations if and only if the Euler characteristic is zero. A result of G.H. Shi implies that, for non 2dimensionally connected spaces, the fixed point sets of deformations are equivalent to the fixed point sets of certain combinatorial maps which he calls good displacements. U. K. Scholz combined Shi's results with a theorem of P. Hall to obtain a characterization of all finite simplicial complexes which admit fixed point free deformations. In this paper we begin by explicitly capturing the combinatorial structure of a non 2dimensionally connected polyhedron in a bipartite graph. We then apply an extended version of Hall's theorem to this graph to get a realization theorem which gives necessary and sufficient conditions for the existence of a deformation with a prescribed finite fixed point set. Scholz's result, and a characterization of all finite simplicial complexes without fixed point free deformations that admit deformations with a single fixed point follow immediately from this realization theorem.
 1.
P. Hall, On representatives of subsets, J. London Math Soc. 10 (1935), 2630.
 2.
Kiang
Tsaihan, The theory of fixed point classes, Translated from
the second Chinese edition, SpringerVerlag, Berlin; Science Press,
Beijing, 1989. MR 1002187
(90h:55002)
 3.
Oystein
Ore, Theory of graphs, American Mathematical Society
Colloquium Publications, Vol. XXXVIII, American Mathematical Society,
Providence, R.I., 1962. MR 0150753
(27 #740)
 4.
U.
Kurt Scholz, Fixed point deformations on compact polyhedra,
Nonlinear functional analysis and its applications (Maratea, 1985), NATO
Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 173, Reidel, Dordrecht,
1986, pp. 387–392. MR 852598
(87k:55002)
 5.
Gen
Hua Shi, On the least number of fixed points for infinite
complexes, Pacific J. Math. 103 (1982), no. 2,
377–387. MR
705237 (85h:55005)
 1.
 P. Hall, On representatives of subsets, J. London Math Soc. 10 (1935), 2630.
 2.
 T.H. Kiang, The Theory of Fixed Point Classes, SpringerVerlag, New York, 1989. MR 90h:55002
 3.
 O. Ore, Theory of Graphs, Amer. Math Soc., Providence, RI, 1962. MR 27:740
 4.
 U. K. Scholz, Fixed point free deformations on compact polyhedra, Nonlinear Functional Analysis and its Applications. D. Reidel Publishing Co., 1986, 387392. MR 87k:55002
 5.
 G.H. Shi, On the least number of fixed points for infinite complexes, Pacific J. Math. 103, No. 2 (1982), 377387. MR 85h:55005
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
54C99,
05C90
Retrieve articles in all journals
with MSC (1991):
54C99,
05C90
Additional Information
Peter Wolfenden
Email:
wolfen@bbnplanet.com
DOI:
http://dx.doi.org/10.1090/S0002994798019412
PII:
S 00029947(98)019412
Keywords:
Deformation,
fixed point,
local cut point,
part,
welding vertex,
marriage theorem
Received by editor(s):
June 20, 1995
Received by editor(s) in revised form:
August 12, 1996
Article copyright:
© Copyright 1998
American Mathematical Society
