Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Strongly indefinite systems
with critical Sobolev exponents


Authors: Josephus Hulshof, Enzo Mitidieri and Robertus vanderVorst
Journal: Trans. Amer. Math. Soc. 350 (1998), 2349-2365
MSC (1991): Primary 35J50, 35J55, 35J65
DOI: https://doi.org/10.1090/S0002-9947-98-02159-X
MathSciNet review: 1466949
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider an elliptic system of Hamiltonian type on a bounded domain. In the superlinear case with critical growth rates we obtain existence and positivity results for solutions under suitable conditions on the linear terms. Our proof is based on an adaptation of the dual variational method as applied before to the scalar case.


References [Enhancements On Off] (What's this?)

  • [AR] A. Ambrosetti & P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14, 349-381, 1973. MR 51:6412
  • [AS] A. Ambrosetti & M. Struwe, A note on the problem $-\Delta u = \lambda u + u |u|^{2^{*}-1}$, Manuscripta Math. 54, 373-379, 1986. MR 87h:35076
  • [BF] V. Benci & D. Fortunato, The dual method in critical point theory - multiplicity results for strongly indefinite functionals, Ann. Mat. Pura Appl. (4) 134, 215-242, 1982. MR 84g:58025
  • [BR] V. Benci & P.H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52, 241-273, 1979. MR 80i:58019
  • [BrL] H. Brezis & E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88, 486-490, 1983. MR 84e:28003
  • [BrN] H. Brezis & L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36, 437-478, 1983. MR 84h:35059
  • [CE] F.H. Clarke & I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33, 103-116, 1980. MR 81e:70017
  • [CFM1] Ph. Clément, D.G. de Figueiredo & E. Mitidieri, Positive Solutions of Semilinear Elliptic Systems, Comm. Partial Diff. Equations, 17, 923-940, 1993. MR 93i:35054
  • [CFM2] Ph. Clément, D.G. de Figueiredo & E. Mitidieri, A priori estimates for positive solutions of semilinear elliptic systems via Hardy-Sobolev inequalities, Nonlinear Partial Differential Equations (Fès, 1994), Pitman Res. Notes in Math. Ser., vol. 343, Longman Sci. Tech., Harlow, 1996, pp. 73-91. CMP 97:03
  • [CV1] Ph. Clément & R.C.A.M. vanderVorst, Interpolation spaces for $\partial _{T}$-systems and applications to critical point theory, Panamer. Math. J. 4, 1-45, 1994. MR 96a:58075
  • [CV2] Ph. Clément & R.C.A.M.vanderVorst, On a semilinear elliptic system, Diff. & Int. Eq. 8, 1317-1329, 1995. MR 96e:35043
  • [FF] P. Felmer & D.G. de Figueiredo, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343, 99-116, 1994. MR 94g:35072
  • [FM1] D.G. de Figueiredo & E. Mitidieri, A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal 17, 836-849, 1986. MR 87h:35111
  • [FM2] D.G. de Figueiredo & E. Mitidieri, Maximum principles for cooperative systems, C.R. Acad. Sci. Paris Sér. I Math. 310, 49-52, 1990. MR 91e:35040
  • [Ho] H. Hofer, On strongly indefinite functionals with applications, Trans. Amer. Math. Soc., 275, 1, 185-214, 1983. MR 84c:58015
  • [HV1] J. Hulshof & R.C.A.M. vanderVorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114(1), 32-58, 1993. MR 94g:35073
  • [HV2] J. Hulshof & R.C.A.M. vanderVorst, Asymptotic behaviour of ground states, Proc. Amer. Math. Soc. 124 (1996), 2423-2431. MR 96m:35082
  • [L1] P.L. Lions, The concentration-compactness principle in the calculus of variations. The Limit case I, Rev. Mat. Iberoamericana 1 (1), 145-201, 1985. MR 87c:49007
  • [L2] P.L. Lions, The concentration compactness principle in the calculus of variations. The Limit case II, Rev. Mat. Iberoamericana 1 (2), 45-121. MR 87j:49012
  • [L3] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review 24, 441-467, 1982. MR 84a:35093
  • [MM] G. Mancini & E. Mitidieri, Positive solutions of some coercive-anticoercive elliptic systems, Ann. Fac. Sci. Toulouse VIII (3), 257-292, 1986. MR 89h:35023
  • [M] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Diff. Equations 18 (1 & 2), 125-151, 1993. MR 94c:26016
  • [P] S.I. Pohozaev, On the eigenfunctions of quasi-linear elliptic problems, Math. USSR Sb. 11, 171-188, 1970. MR 42:8081
  • [PS] P. Pucci & J. Serrin, A general variational identity, Indiana Univ. Math. J. 35, 681-703, 1986. MR 88b:35072
  • [PV] L.A. Peletier & R. C. A. M. vanderVorst, Existence and non-existence of positive solutions of nonlinear elliptic systems and the biharmonic equation, Differential & Integral Equations, 54, 747-767, 1991. MR 93c:35039
  • [V1] R.C.A.M. vanderVorst, Variational identities and applications to differential systems, Arch. Rat. Mech. Anal. 116, 375-398, 1991. MR 93d:35043
  • [V2] R.C.A.M. vanderVorst, Fourth order elliptic equations with critical growth, C.R. Acad. Sci. Paris Sér. I Math. 320, 295-299, 1995. MR 96b:35076

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35J50, 35J55, 35J65

Retrieve articles in all journals with MSC (1991): 35J50, 35J55, 35J65


Additional Information

Josephus Hulshof
Affiliation: Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
Email: hulshof@wi.leidenuniv.nl

Enzo Mitidieri
Affiliation: Dipartimento di Scienze Matematiche, Università degli Studi di Trieste, Piazzale Europa 1, 34100 Trieste, Italy

Robertus vanderVorst
Affiliation: Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, Georgia 30332-0190
Email: rvander@math.gatech.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02159-X
Keywords: Elliptic variational systems, strongly indefinite functionals, dual method, critical Palais-Smale level, critical points, ground states, decay rates, scaling
Received by editor(s): June 5, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society