Singularity of self-similar measures

with respect to Hausdorff measures

Authors:
Manuel Morán and José-Manuel Rey

Journal:
Trans. Amer. Math. Soc. **350** (1998), 2297-2310

MSC (1991):
Primary 28A78, 28A80

DOI:
https://doi.org/10.1090/S0002-9947-98-02218-1

MathSciNet review:
1475691

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Besicovitch (1934) and Eggleston (1949) analyzed subsets of points of the unit interval with given frequencies in the figures of their base- expansions. We extend this analysis to self-similar sets, by replacing the frequencies of figures with the frequencies of the generating similitudes. We focus on the interplay among such sets, self-similar measures, and Hausdorff measures. We give a fine-tuned classification of the Hausdorff measures according to the singularity of the self-similar measures with respect to those measures. We show that the self-similar measures are concentrated on sets whose frequencies of similitudes obey the Law of the Iterated Logarithm.

**[1]**C. Bandt, Deterministic fractals and fractal measures, in*Lecture notes of the School on Measure Theory and Real Analysis*, Grado, Italy, 1991, Rend. Ist. Mat. Univ. Trieste**23**(1991), 1-40 (1993). MR**95e:28002****[2]**M. Barnsley,*Fractals everywhere*, Academic Press, 1988. MR**90e:58080****[3]**A.S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system,*Math. Ann.***110**(1934), 321-330.**[4]**P. Billingsley, Hausdorff dimension in probability theory,*Illinois J. Math.***4**(1960), 187-209. MR**24:A1750****[5]**R. Cawley and R.D. Mauldin, Multifractal decomposition of Moran fractals,*Adv. Math.***92**(1992), 196-236. MR**93b:58085****[6]**M.J.P. Cooper, The Hausdorff measure of the Besicovitch-Eggleston set, preprint.**[7]**A. Deliu, J.S. Geronimo, R. Shonkwiler and D. Hardin, Dimensions associated with recurrent self-similar sets,*Math. Proc. Cambridge Phil. Soc.***110**(1991), 327-336. MR**92g:58069****[8]**H.G. Eggleston, The fractional dimension of a set defined by decimal properties,*Quart. J. Math. Oxford Ser.***20**(1949), 31-36. MR**11:88e****[9]**K.J. Falconer, The Multifractal spectrum of statistically self-similar measures,*J. Theoret. Probab.***7**(1994), 681-702. MR**95m:60076****[10]**J.E. Hutchinson, Fractals and self-similarity,*Indiana Univ. Math. J.***30**(1981), 713-747. MR**82h:49026****[11]**M. Morán, Hausdorff measure of infinitely generated self-similar sets,*Monatsh. Math.***122**(1996), 387-399. MR**97j:28015****[12]**M. Morán and J.-M. Rey, Geometry of self-similar measures,*Ann. Acad. Sci. Fenn. Mathematica***22**(1997), 365-386.**[13]**P.A.P. Moran, Additive functions of intervals and Hausdorff measure,*Proc. Cambridge Phil. Soc.***42**(1946), 15-23. MR**7:278f****[14]**N. Patzschke, Self-conformal multifractal measures, preprint.**[15]**F. Przytycki, M. Urba\'{n}ski and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I,*Ann. of Math.***130**(1989), 1-40. MR**91i:58115****[16]**M.S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem,*Israel J. Math.***32**(1978) 356-362. MR**81f:60016****[17]**C.A. Rogers and S.J. Taylor, Functions continuous and singular with respect to a Hausdorff measure,*Mathematika***8**(1961), 1-31. MR**24:A200****[18]**A. Schief, Separation properties for self-similar sets,*Proc. Amer. Math. Soc.***122**(1994), 111-115. MR**94k:28012****[19]**M. Smorodinsky, Singular measures and Hausdorff measures,*Israel J. Math.***7**(1969), 203-206. MR**40:3589****[20]**C. Tricot, Two definitions of fractional dimension,*Math. Proc. Cambridge Phil. Soc.***91**(1982), 57-74. MR**84d:28013****[21]**P. Walters,*An introduction to ergodic theory*, Springer-Verlag, 1982. MR**84e:28017****[22]**L.S. Young, Dimension, entropy and Liapunov exponents,*Ergodic Theory Dynam. Systems***2**(1982), 109-124. MR**84h:58087**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
28A78,
28A80

Retrieve articles in all journals with MSC (1991): 28A78, 28A80

Additional Information

**Manuel Morán**

Affiliation:
Departamento de Análisis Económico, Universidad Complutense, Campus de Somo- saguas, 28223 Madrid. Spain

Email:
ececo06@sis.ucm.es

**José-Manuel Rey**

Affiliation:
Departamento de Análisis Económico, Universidad Complutense, Campus de Somo- saguas, 28223 Madrid. Spain

Email:
ececo07@sis.ucm.es

DOI:
https://doi.org/10.1090/S0002-9947-98-02218-1

Keywords:
Self--similarity,
Hausdorff measures,
dimension function,
Law of the Iterated Logarithm.

Received by editor(s):
January 17, 1996

Additional Notes:
Research partially supported by Ente Público Puertos del Estado

Article copyright:
© Copyright 1998
American Mathematical Society