Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Projective threefolds on which $\mathbf{SL}(2)$ acts with
2-dimensional general orbits

Author: T. Nakano
Journal: Trans. Amer. Math. Soc. 350 (1998), 2903-2924
MSC (1991): Primary 14L30; Secondary 14E30
MathSciNet review: 1451611
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The birational geometry of projective threefolds on which $\mathbf{SL}(2)$ acts with 2-dimensional general orbits is studied from the viewpoint of the minimal model theory of projective threefolds. These threefolds are closely related to the minimal rational threefolds classified by Enriques, Fano and Umemura. The main results are (i) the $\mathbf{SL}(2)$-birational classification of such threefolds and (ii) the classification of relatively minimal models in the fixed point free cases.

References [Enhancements On Off] (What's this?)

  • [A] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 0268188
  • [B] A. Białynicki-Birula, On action of 𝑆𝐿(2) on complete algebraic varieties, Pacific J. Math. 86 (1980), no. 1, 53–58. MR 586868
  • [CKM] Herbert Clemens, János Kollár, and Shigefumi Mori, Higher-dimensional complex geometry, Astérisque 166 (1988), 144 pp. (1989) (English, with French summary). MR 1004926
  • [De] Michel Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507–588 (French). MR 0284446
  • [Du1] Ewa Duma, Algebraic 𝑆𝐿(2)-actions: deformations of infinite isotropy subgroups, Colloq. Math. 58 (1990), no. 2, 221–231. MR 1060173
  • [Du2] Ewa Duma, On 𝑆𝐿(2)-actions without 3-dimensional orbits, Colloq. Math. 58 (1990), no. 2, 233–241. MR 1060174
  • [EF] F. Enriques and G. Fano, Sui gruppi di transformazioni cremoniane dello spazio, Ann. Mat. Pura Appl. $(2^a)$ 15 (1897), 59-98.
  • [F] G. Fano, I gruppi di Jonquiéres generalizzati, Atti della R. Accad. di Troino 33 (1898), 221-271.
  • [FG] Wolfgang Fischer and Hans Grauert, Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1965 (1965), 89–94 (German). MR 0184258
  • [H] R. Hermann, Lie groups: History, frontiers and applications, Vol. 1 (Sophus Lie's 1880 Transformation Group Paper), Mat. Sci. Press, Brookline, 1975.
  • [K] Hanspeter Kraft, Algebraic automorphisms of affine space, Topological methods in algebraic transformation groups (New Brunswick, NJ, 1988) Progr. Math., vol. 80, Birkhäuser Boston, Boston, MA, 1989, pp. 81–105. MR 1040858
  • [L] Domingo Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81–105. Bull. Soc. Math. France, Paris, Mémoire 33 (French). MR 0342523
  • [LV] D. Luna and Th. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245 (French). MR 705534, 10.1007/BF02564633
  • [Mab] Toshiki Mabuchi, On the classification of essentially effective 𝑆𝐿(𝑛;𝐶)-actions on algebraic 𝑛-folds, Osaka J. Math. 16 (1979), no. 3, 745–758. MR 551586
  • [Mat] Hideyuki Matsumura, On algebraic groups of birational transformations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 34 (1963), 151–155. MR 0159825
  • [Mo] Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, 10.2307/2007050
  • [Mu] Shigeru Mukai and Hiroshi Umemura, Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 490–518. MR 726439, 10.1007/BFb0099976
  • [N1] Tetsuo Nakano, Regular actions of simple algebraic groups on projective threefolds, Nagoya Math. J. 116 (1989), 139–148. MR 1029975
  • [N2] Tetsuo Nakano, On equivariant completions of 3-dimensional homogeneous spaces of 𝑆𝐿(2,𝐶), Japan. J. Math. (N.S.) 15 (1989), no. 2, 221–273. MR 1039245
  • [N3] Tetsuo Nakano, Regular actions of semisimple algebraic groups on projective threefolds, especially 𝑆𝐿(2), Group actions and invariant theory (Montreal, PQ, 1988) CMS Conf. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 1989, pp. 137–155. MR 1021286
  • [P] V. L. Popov, Quasihomogeneous affine algebraic varieties of the group 𝑆𝐿(2), Izv. Akad. Nauk SSSR Ser. Mat 37 (1973), 792–832 (Russian). MR 0340263
  • [R] Maxwell Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443. MR 0082183
  • [S] Hideyasu Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573–605. MR 0387294
  • [U1] Hiroshi Umemura, Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables, Nagoya Math. J. 79 (1980), 47–67 (French). MR 587409
  • [U2] Hiroshi Umemura, Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type, Nagoya Math. J. 87 (1982), 59–78. MR 676586
  • [U3] Hiroshi Umemura, On the maximal connected algebraic subgroups of the Cremona group. II, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 349–436. MR 803342
  • [U4] Hiroshi Umemura, Minimal rational threefolds. II, Nagoya Math. J. 110 (1988), 15–80. MR 945907

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14L30, 14E30

Retrieve articles in all journals with MSC (1991): 14L30, 14E30

Additional Information

T. Nakano
Affiliation: Department of Mathematical Sciences, College of Science and Engineering, Tokyo Denki University, Hatoyama-machi, Hiki-gun, Saitama-ken, 350-0394, Japan

Keywords: $\mathbf{SL}(2)$-action, projective threefolds, minimal models
Received by editor(s): July 20, 1996
Article copyright: © Copyright 1998 American Mathematical Society