Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Periodic orbits in magnetic fields
and Ricci curvature of Lagrangian systems


Authors: Abbas Bahri and Iskander A. Taimanov
Journal: Trans. Amer. Math. Soc. 350 (1998), 2697-2717
MSC (1991): Primary 58E05, 58E30, 49N66
MathSciNet review: 1458315
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Lagrangian system describing a motion of a charged particle on a Riemannian manifold is studied. For this flow an analog of a Ricci curvature is introduced, and for Ricci positively curved flows the existence of periodic orbits is proved.


References [Enhancements On Off] (What's this?)

  • [A] V. I. Arnol′d, The first steps of symplectic topology, Uspekhi Mat. Nauk 41 (1986), no. 6(252), 3–18, 229 (Russian). MR 890489
  • [B] A. Bahri, Pseudo-orbits of contact forms, Pitman Research Notes in Mathematics Series, vol. 173, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. MR 961252
  • [CZ] C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49. MR 707347, 10.1007/BF01393824
  • [G1] V. L. Ginzburg, New generalizations of Poincaré’s geometric theorem, Funktsional. Anal. i Prilozhen. 21 (1987), no. 2, 16–22, 96 (Russian). MR 902290
  • [G2] Viktor L. Ginzburg, On the existence and non-existence of closed trajectories for some Hamiltonian flows, Math. Z. 223 (1996), no. 3, 397–409. MR 1417851, 10.1007/PL00004565
  • [GN] P. G. Grinevich and S. P. Novikov, Nonselfintersecting magnetic orbits on the plane. Proof of the overthrowing of cycles principle, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, vol. 170, Amer. Math. Soc., Providence, RI, 1995, pp. 59–82. MR 1355551
  • [H] Hedlund G.A., Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), 530-542.
  • [K1] Wilhelm Klingenberg, Lectures on closed geodesics, Springer-Verlag, Berlin-New York, 1978. Grundlehren der Mathematischen Wissenschaften, Vol. 230. MR 0478069
  • [K2] Hisenkei kasekibun kei no kenkyū no gendai to tembō, Kyoto University, Research Institute for Mathematical Sciences, Kyoto, 1994 (Japanese). Sūrikaisekikenkyūsho Kōkyūroku No. 868 (1994). MR 1330696
  • [Ko] V. V. Kozlov, Calculus of variations in the large and classical mechanics, Uspekhi Mat. Nauk 40 (1985), no. 2(242), 33–60, 237 (Russian). MR 786086
  • [M] J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR 0163331
  • [N1] S. P. Novikov, Multivalued functions and functionals. An analogue of the Morse theory, Dokl. Akad. Nauk SSSR 260 (1981), no. 1, 31–35 (Russian). MR 630459
  • [N2] S. P. Novikov, Variational methods and periodic solutions of equations of Kirchhoff type. II, Funktsional. Anal. i Prilozhen. 15 (1981), no. 4, 37–52, 96 (Russian). MR 639199
  • [N3] S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37 (1982), no. 5(227), 3–49, 248 (Russian). MR 676612
  • [NS] S. P. Novikov and I. Shmel′tser, Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel′man-Morse theory. I, Funktsional. Anal. i Prilozhen. 15 (1981), no. 3, 54–66 (Russian). MR 630339
  • [NT] S. P. Novikov and I. A. Taĭmanov, Periodic extremals of multivalued or not everywhere positive functionals, Dokl. Akad. Nauk SSSR 274 (1984), no. 1, 26–28 (Russian). MR 730159
  • [PS] R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165–172. MR 0158411, 10.1090/S0002-9904-1964-11062-4
  • [SU] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1–24. MR 604040, 10.2307/1971131
  • [T1] I. A. Taĭmanov, The principle of throwing out cycles in Morse-Novikov theory, Dokl. Akad. Nauk SSSR 268 (1983), no. 1, 46–50 (Russian). MR 687925
  • [T2] I. A. Taĭmanov, Non-self-intersecting closed extremals of multivalued or not-everywhere-positive functionals, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 2, 367–383 (Russian); English transl., Math. USSR-Izv. 38 (1992), no. 2, 359–374. MR 1133303
  • [T3] I. A. Taĭmanov, Closed non-self-intersecting extremals of multivalued functionals, Sibirsk. Mat. Zh. 33 (1992), no. 4, 155–162, 223 (Russian, with Russian summary); English transl., Siberian Math. J. 33 (1992), no. 4, 686–692 (1993). MR 1185445, 10.1007/BF00971134
  • [T4] I. A. Taĭmanov, Closed extremals on two-dimensional manifolds, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 143–185, 223 (Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 163–211. MR 1185286, 10.1070/RM1992v047n02ABEH000880

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58E05, 58E30, 49N66

Retrieve articles in all journals with MSC (1991): 58E05, 58E30, 49N66


Additional Information

Abbas Bahri
Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Iskander A. Taimanov
Affiliation: Institute of Mathematics, 630090 Novosibirsk, Russia
Email: taimanov@math.nsc.ru

DOI: https://doi.org/10.1090/S0002-9947-98-02108-4
Received by editor(s): December 28, 1995
Article copyright: © Copyright 1998 American Mathematical Society