Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Equations for the Jacobian
of a hyperelliptic curve


Author: Paul van Wamelen
Journal: Trans. Amer. Math. Soc. 350 (1998), 3083-3106
MSC (1991): Primary 14H40; Secondary 14H42
DOI: https://doi.org/10.1090/S0002-9947-98-02056-X
MathSciNet review: 1432144
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an explicit embedding of the Jacobian of a hyperelliptic curve, $y^2 = f(x)$, into projective space such that the image is isomorphic to the Jacobian over the splitting field of $f$. The embedding is a modification of the usual embedding by theta functions with half integer characteristics.


References [Enhancements On Off] (What's this?)

  • [Fly90] E. V. Flynn. The Jacobian and formal group of a curve of genus $2$ over an arbitrary ground field. Math. Proc. Cambridge Philos. Soc., 107:425-441, 1990. MR 91b:14025
  • [GG93] D. M. Gordon and D. R. Grant. Computing the Mordell-Weil rank of Jacobians of curves of genus $2$. Trans. Amer. Math. Soc., 337:807-824, 1993. MR 93h:11057
  • [Gra85] D. R. Grant. Theta Functions and Division Points on Abelian Varieties of Dimension Two. PhD thesis, MIT, 1985.
  • [Gra90] D. R. Grant. Formal groups in genus $2$. J. Reine Angew. Math., 411:96-121, 1990. MR 91m:14045
  • [Har77] R. Hartshorne. Algebraic Geometry. Springer-Verlag, 1977. MR 57:3116
  • [Iit82] Shigeru Iitaka. Algebraic Geometry. Springer-Verlag, 1982. MR 84j:14001
  • [Lan82] S. Lang. Introduction to Algebraic and Abelian Functions. Springer-Verlag, 1982. MR 84m:14032
  • [LB92] H. Lange and Ch. Birkenhake. Complex Abelian Varieties. Springer-Verlag, 1992. MR 94j:14001
  • [Mil86a] J.S. Milne. Abelian varieties. In G. Cornell and J.H. Silverman, editors, Arithmetic Geometry. Springer-Verlag, 1986, pp. 103-150. MR 89b:14029
  • [Mil86b] J.S. Milne. Jacobian varieties. In G. Cornell and J.H. Silverman, editors, Arithmetic Geometry. Springer-Verlag, 1986, pp. 167-212. MR 89b:14029
  • [Mum83] D. Mumford. Tata Lectures on Theta I, volume 28 of Progr. Math. Birkhäuser, 1983. MR 85h:14026
  • [Mum84] D. Mumford. Tata Lectures on Theta II, volume 43 of Progr. Math. Birkhäuser, 1984. MR 86b:14017
  • [Pil90] J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math. Comp., 55(192):745-763, 1990. MR 91a:11071

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14H40, 14H42

Retrieve articles in all journals with MSC (1991): 14H40, 14H42


Additional Information

Paul van Wamelen
Affiliation: Department of Mathematics, University of California, San Diego, San Diego, California 92093
Address at time of publication: Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918
Email: wamelen@math.lsu.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02056-X
Keywords: Jacobian, hyperelliptic curve, theta function, theta constant, Thomae's identity
Received by editor(s): December 5, 1995
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society