Equations for the Jacobian of a hyperelliptic curve
Author:
Paul van Wamelen
Journal:
Trans. Amer. Math. Soc. 350 (1998), 30833106
MSC (1991):
Primary 14H40; Secondary 14H42
MathSciNet review:
1432144
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We give an explicit embedding of the Jacobian of a hyperelliptic curve, , into projective space such that the image is isomorphic to the Jacobian over the splitting field of . The embedding is a modification of the usual embedding by theta functions with half integer characteristics.
 [Fly90]
Eugene
Victor Flynn, The Jacobian and formal group of a curve of genus 2
over an arbitrary ground field, Math. Proc. Cambridge Philos. Soc.
107 (1990), no. 3, 425–441. MR 1041476
(91b:14025), http://dx.doi.org/10.1017/S0305004100068729
 [GG93]
Daniel
M. Gordon and David
Grant, Computing the MordellWeil rank of
Jacobians of curves of genus two, Trans. Amer.
Math. Soc. 337 (1993), no. 2, 807–824. MR 1094558
(93h:11057), http://dx.doi.org/10.1090/S00029947199310945580
 [Gra85]
D. R. Grant. Theta Functions and Division Points on Abelian Varieties of Dimension Two. PhD thesis, MIT, 1985.
 [Gra90]
David
Grant, Formal groups in genus two, J. Reine Angew. Math.
411 (1990), 96–121. MR 1072975
(91m:14045), http://dx.doi.org/10.1515/crll.1990.411.96
 [Har77]
Robin
Hartshorne, Algebraic geometry, SpringerVerlag, New
YorkHeidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
(57 #3116)
 [Iit82]
Shigeru
Iitaka, Algebraic geometry, Graduate Texts in Mathematics,
vol. 76, SpringerVerlag, New YorkBerlin, 1982. An introduction to
birational geometry of algebraic varieties; NorthHolland Mathematical
Library, 24. MR
637060 (84j:14001)
 [Lan82]
Serge
Lang, Introduction to algebraic and abelian functions, 2nd
ed., Graduate Texts in Mathematics, vol. 89, SpringerVerlag, New
YorkBerlin, 1982. MR 681120
(84m:14032)
 [LB92]
Herbert
Lange and Christina
Birkenhake, Complex abelian varieties, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 302, SpringerVerlag, Berlin, 1992. MR 1217487
(94j:14001)
 [Mil86a]
Gary
Cornell and Joseph
H. Silverman (eds.), Arithmetic geometry, SpringerVerlag, New
York, 1986. Papers from the conference held at the University of
Connecticut, Storrs, Connecticut, July 30–August 10, 1984. MR 861969
(89b:14029)
 [Mil86b]
Gary
Cornell and Joseph
H. Silverman (eds.), Arithmetic geometry, SpringerVerlag, New
York, 1986. Papers from the conference held at the University of
Connecticut, Storrs, Connecticut, July 30–August 10, 1984. MR 861969
(89b:14029)
 [Mum83]
David
Mumford, Tata lectures on theta. I, Progress in Mathematics,
vol. 28, Birkhäuser Boston, Inc., Boston, MA, 1983. With the
assistance of C. Musili, M. Nori, E. Previato and M. Stillman. MR 688651
(85h:14026)
 [Mum84]
David
Mumford, Tata lectures on theta. II, Progress in Mathematics,
vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian
theta functions and differential equations; With the collaboration of C.
Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 742776
(86b:14017)
 [Pil90]
J.
Pila, Frobenius maps of abelian varieties
and finding roots of unity in finite fields, Math. Comp. 55 (1990), no. 192, 745–763. MR 1035941
(91a:11071), http://dx.doi.org/10.1090/S0025571819901035941X
 [Fly90]
 E. V. Flynn. The Jacobian and formal group of a curve of genus over an arbitrary ground field. Math. Proc. Cambridge Philos. Soc., 107:425441, 1990. MR 91b:14025
 [GG93]
 D. M. Gordon and D. R. Grant. Computing the MordellWeil rank of Jacobians of curves of genus . Trans. Amer. Math. Soc., 337:807824, 1993. MR 93h:11057
 [Gra85]
 D. R. Grant. Theta Functions and Division Points on Abelian Varieties of Dimension Two. PhD thesis, MIT, 1985.
 [Gra90]
 D. R. Grant. Formal groups in genus . J. Reine Angew. Math., 411:96121, 1990. MR 91m:14045
 [Har77]
 R. Hartshorne. Algebraic Geometry. SpringerVerlag, 1977. MR 57:3116
 [Iit82]
 Shigeru Iitaka. Algebraic Geometry. SpringerVerlag, 1982. MR 84j:14001
 [Lan82]
 S. Lang. Introduction to Algebraic and Abelian Functions. SpringerVerlag, 1982. MR 84m:14032
 [LB92]
 H. Lange and Ch. Birkenhake. Complex Abelian Varieties. SpringerVerlag, 1992. MR 94j:14001
 [Mil86a]
 J.S. Milne. Abelian varieties. In G. Cornell and J.H. Silverman, editors, Arithmetic Geometry. SpringerVerlag, 1986, pp. 103150. MR 89b:14029
 [Mil86b]
 J.S. Milne. Jacobian varieties. In G. Cornell and J.H. Silverman, editors, Arithmetic Geometry. SpringerVerlag, 1986, pp. 167212. MR 89b:14029
 [Mum83]
 D. Mumford. Tata Lectures on Theta I, volume 28 of Progr. Math. Birkhäuser, 1983. MR 85h:14026
 [Mum84]
 D. Mumford. Tata Lectures on Theta II, volume 43 of Progr. Math. Birkhäuser, 1984. MR 86b:14017
 [Pil90]
 J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math. Comp., 55(192):745763, 1990. MR 91a:11071
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
14H40,
14H42
Retrieve articles in all journals
with MSC (1991):
14H40,
14H42
Additional Information
Paul van Wamelen
Affiliation:
Department of Mathematics, University of California, San Diego, San Diego, California 92093
Address at time of publication:
Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 708034918
Email:
wamelen@math.lsu.edu
DOI:
http://dx.doi.org/10.1090/S000299479802056X
PII:
S 00029947(98)02056X
Keywords:
Jacobian,
hyperelliptic curve,
theta function,
theta constant,
Thomae's identity
Received by editor(s):
December 5, 1995
Article copyright:
© Copyright 1998
American Mathematical Society
