Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Small subalgebras of Steenrod and
Morava stabilizer algebras


Author: N. Yagita
Journal: Trans. Amer. Math. Soc. 350 (1998), 3021-3041
MSC (1991): Primary 55N22; Secondary 57R77
DOI: https://doi.org/10.1090/S0002-9947-98-02226-0
MathSciNet review: 1475699
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $P(j)$ (resp. $S(n)_{(j)})$ be the subalgebra of the Steenrod algebra $\mathcal{A}_p$ (resp. $n$th Morava stabilizer algebra) generated by reduced powers $\mathcal{P}^{p^i}$, $0\le i\le j$ (resp. $t_i$, $1\le i\le j)$. In this paper we identify the dual $P(j-1)^*$ of $P(j-1)$ (resp. $S(n)_{(j)}$, for $j\le n)$ with some Frobenius kernel (resp. $F_{p^n}$-points) of a unipotent subgroup $G(j+1)$ of the general linear algebraic group $GL_{j+1}$. Using these facts, we get the additive structure of $H^*(P(1))=\operatorname{Ext}_{P(1)}(Z/p,Z/p)$ for odd primes.


References [Enhancements On Off] (What's this?)

  • [E] L. Evens, Cohomology of groups, Oxford Univ. Press, 1991. MR 93i:20059
  • [G-S-S] V. Gorbounov, S. Siegel, and P. Symonds, The cohomology of the Morava stabilizer group $S_2$ at the prime $3$, Preprint 1994.
  • [K-S-T-Y 1] M. Kaneda, N. Shimada, M. Tezuka, and N. Yagita, Cohomology of infinitesimal algebraic groups, Math. Z. 205 (1990), 61-95. MR 91k:20048
  • [K-S-T-Y 2] -, Representations of the Steenrod algebra, J. Algebra 155 (1993), 435-453. MR 94b:55025
  • [H] H-W. Henn, On the $\operatorname{mod}p$ cohomology of profinite groups of positive $p$ rank, Preprint, 1994.
  • [M-W] H. Miller and C. Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl. Algebra 22 (1981), 293-307. MR 82m:55024
  • [L 1] I. Leary, The cohomology of certain finite groups, Thesis, Cambridge Univ., 1990.
  • [L 2] -, A differential in the Lyndon-Hochschild-Serre spectral sequence, J. Pure Appl. Algebra 88 (1993), 155-168. MR 94m:20102
  • [Li] A. Liulevicius, The factorization of cyclic reduced power by secondary cohomology operation, Mem. Amer. Math. Soc. 42, 1962. MR 31:6226
  • [P-Y] C. Peterson and N. Yagita, Rational cohomology of Witt groups, Math. Z. 224 (1997), 665-676. CMP 97:13
  • [Q] D. Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. 94 (1971), 549-572; 573-602. MR 45:7743
  • [R 1] D. Ravenel, The structure of Morava stabilizer algebras, Invent. Math. 37 (1976), 109-120. MR 54:8632
  • [R 2] -, The cohomology of the Morava stabilizer algebra, Math. Z. 152 (1977), 287-297. MR 55:4170
  • [R 3] -, Complex cobordism and stable homotopy groups of spheres, Academic Press, New York, 1986. MR 87j:55003
  • [S-I] N. Shimada and A. Iwai, On the cohomology of some Hopf algebras, Nagoya Math. J. 30 (1967), 103-111. MR 35:6731
  • [T] M. Tezuka, Cohomology of unipotent algebraic and finite groups and the Steenrod algebra, Math. Z. 216 (1994), 45-67. MR 95c:20064
  • [Y] N. Yagita, Frobenius operations and cohomology of $\operatorname{GL}_3(F_q)$, Comm. Algebra 16 (1988), 989-1016. MR 89c:20077

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 55N22, 57R77

Retrieve articles in all journals with MSC (1991): 55N22, 57R77


Additional Information

N. Yagita
Affiliation: Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
Email: yagita@mito.ipc.ibaraki.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-98-02226-0
Received by editor(s): January 9, 1995
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society