Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Self-duality operators on
odd dimensional manifolds


Author: Houhong Fan
Journal: Trans. Amer. Math. Soc. 350 (1998), 3673-3706
MSC (1991): Primary 57R25, 58G10; Secondary 57R80, 57M99, 58F25
DOI: https://doi.org/10.1090/S0002-9947-98-01954-0
MathSciNet review: 1422603
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct a new elliptic operator associated to any nowhere zero vector field on an odd-dimensional manifold and study its index theory. It turns out this operator has several geometric applications to conformal vector fields, self-dual vector fields, locally free $S^{1}$-actions and transversal hypersurfaces of these vector fields in an odd-dimensional manifold. In particular, we reveal a non-stable phenomena about the existence of conformal vector fields and self-dual vector fields in odd dimensions above 3. This is in sharp contrast to the stable phenomena about the existence of nowhere zero vector fields in odd dimensions. Besides these applications, the index formula of this new operator also gives the formulas for the dimensions of self-duality cohomology groups and for the virtual dimensions of the moduli spaces of anti-self-dual connections on 5-cobordisms, which are introduced in author's previous papers.


References [Enhancements On Off] (What's this?)

  • 1. V.I.Arnold, Problems on singularity and dynamical system, preprint, 1992.
  • 2. M.F.Atiyah, Vector fields on manifolds, Arbeitsgemeinschaft f$\ddot{\text{u}}$r Forschung des Landes Nordrhein-Westfalen, 200, 1970. MR 41:7707
  • 3. M.F.Atiyah, The index theorem for manifolds with boundary, Appendix I in seminar on the Atiyah-Singer index theorem, Ann. Math. Stud. 57(1965), Princeton Univ. Press, 337-351. MR 33:6649
  • 4. M.F.Atiyah and R.Bott, The index theorem for manifolds with boundary, Differential Analysis (papers collected at the Bombay Colloquium 1964), Oxford Univ. Press, 175-186. MR 32:3069
  • 5. M.F.Atiyah, N.J. Hitchin, and I.M.Singer, Self-duality in four dimensional Riemannian geometry, Proc. Royal Soc. London, Ser.A 362, (1978). 425-461. MR 80d:53023
  • 6. D.E.Blair, Contact manifolds in Riemannian geometry, Springer-Verlag, 1976. MR 57:7444
  • 7. M.Brunella and E.Ghys, Umbilical foliations and transversely holomorphic flows, J. Diff. Geom. 41(1995), 1-19. MR 95k:53039
  • 8. S.K.Donaldson, Irrationality and the h-cobordism conjecture, J. Diff. Geom. 26(1986), 141-168. MR 88j:57035
  • 9. S.K.Donaldson and P.B.Kronheimer, The geometry of four-manifolds, Oxford Science Publications, Oxford, 1990. MR 92a:57036
  • 10. H.H.Fan, Half De Rham complexes and line fields on odd dimensional manifolds, Trans. Amer. Math. Soc. 348(1996), no.8, 2947-2982. MR 96k:58204
  • 11. H.H.Fan, Gauge fields and line fields on five-manifolds, preprint, Yale, 1995.
  • 12. H.H.Fan, Seiberg-Witten-type equation on five-manifolds, preprint, Yale, 1995.
  • 13. P.B.Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish, 1984. MR 86j:58144
  • 14. M.W.Hirsch, Differential topology, Springer-Verlag, 1976. MR 56:6669
  • 15. P.B.Kronheimer and T.S.Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Letters 1, 797-808 (1994) MR 96a:57073
  • 16. P.B.Kronheimer and T.S.Mrowka, Embedded surfaces and the structure of Donaldson's Polynomial Invariants, J. Diff. Geom. 3 (1995) 573-734. MR 96e:57019
  • 17. P.Molino, Riemannian foliations, Birkh$\ddot{\text{a}}$user, Boston, 1988 MR 89b:53054
  • 18. J.W.Morgan, Z.Szabó and C.H.Taubes. The generalized Thom conjecture, preprint, 1995.
  • 19. D.B.Ray and I.M.Singer, R-torsion and the Laplacian on Riemannian manifolds, Advan. Math. 7 (1971), 145-210. MR 45:4447
  • 20. C.H.Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Letters 1, 809-822 (1994). MR 95j:57039
  • 21. I.Vaisman, Conformal foliations, Kodai Math. J. 2 (1979), 26-37. MR 80g:57038

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 57R25, 58G10, 57R80, 57M99, 58F25

Retrieve articles in all journals with MSC (1991): 57R25, 58G10, 57R80, 57M99, 58F25


Additional Information

Houhong Fan
Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06520
Email: hhfan@math.yale.edu

DOI: https://doi.org/10.1090/S0002-9947-98-01954-0
Received by editor(s): August 18, 1995
Received by editor(s) in revised form: October 6, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society