ON ZETA FUNCTIONS AND IWASAWA MODULES

JANGHEON OH

Abstract. We study the relation between zeta-functions and Iwasawa modules. We prove that the Iwasawa modules $X_{\kappa}(\zeta_p)$ for almost all p determine the zeta function ζ_k when k is a totally real field. Conversely, we prove that the λ-part of the Iwasawa module X_k is determined by its zeta-function ζ_k up to pseudo-isomorphism for any number field k. Moreover, we prove that arithmetically equivalent CM fields have also the same μ-invariant.

0. Introduction

Let $\zeta_k(s)$ be the zeta function attached to a number field k. When two number fields share a common zeta function, they are said to be arithmetically equivalent. Isomorphic fields have identical zeta functions. The first non-isomorphic arithmetically equivalent fields were discovered in 1925 by Gassmann [3]. If k is isomorphic to any field L with the same zeta function, that is, if $\zeta_k = \zeta_L \Rightarrow k \simeq L$, then k is said to be arithmetically solitary. Robert Perlis [9] proved that any field k of degree $[k : \mathbb{Q}] \leq 6$ is solitary. However, there are infinite families of k, k' of non-isomorphic arithmetically equivalent fields (see Perlis [9]).

In 1958, with the motivation from the theory of function fields, Iwasawa introduced his theory of \mathbb{Z}_p-extensions, and a few years later Kubota and Leopoldt invented p-adic L-functions. Iwasawa [5] interprets these p-adic L-functions in terms of \mathbb{Z}_p-extensions. In 1979, Mazur and Wiles proved the Main Conjecture, showing that p-adic L-functions are essentially the characteristic power series of certain Galois actions arising in the theory of \mathbb{Z}_p-extensions.

In Tate [12] and Turner [13], the following result is proved: let k and k' be function fields in one variable over a finite constant field F and $\zeta_k, \zeta_{k'}$ be Dedekind zeta functions of k, k', respectively. Let C, C' be complete non-singular curves defined over F with function fields isomorphic to k, k', and $J(C), J(C')$ the Jacobian varieties of C, C'. Then the following are equivalent:

1. $\zeta_k = \zeta_{k'}$,
2. $J(C)$ and $J(C')$ are F-isogenous.
Komatsu [8] proved analogous results in the number field case. More explicitly, he proved the following result: Let \(p \) be a rational prime number, \(k \) and \(k' \) be number fields. Let \(k_\infty \) and \(k'_\infty \) be the basic \(\mathbb{Z}_p \)-extensions of \(k \) and \(k' \), respectively. Let \(X_k \) the Galois group of the maximal unramified abelian \(p \)-extension of \(k_\infty \) over \(k_\infty \). Then \(\zeta_k = \zeta_{k'} \) implies that \(X_k \) and \(X_{k'} \) are isomorphic as \(\Lambda \)-modules for almost all prime numbers \(p \). Adachi and Komatsu [1] proved a weaker converse statement of the above result: Let \(k \) and \(k' \) be totally real number fields. Let \(K_\infty \) be the cyclotomic \(\mathbb{Z}_p \)-extension of \(k(\zeta_p) \), \(\Omega \) the maximal abelian \(p \)-extension of \(K_\infty \) unramified outside \(p \), and \(Y_{k(\zeta_p)} \) the Galois group of \(\Omega \) over \(K_\infty \). If \(Y_{k(\zeta_p)} \) is isomorphic to \(Y_{k'_{\zeta_p}} \) for every prime \(p \), then \(\zeta_k = \zeta_{k'} \).

In this paper, we will improve their results. First, we will prove that the Iwasawa modules \(X_{k(\zeta_p)} \) for almost all primes \(p \) determine the field \(k \) up to arithmetic equivalence when \(k \) is a totally real number field. In this case, the Main Conjecture relates the \(p \)-adic \(L \)-functions of \(k \) and the Iwasawa module \(X_k \). The \(p \)-adic \(L \)-functions give us enough information on the values of the zeta function of \(k \) at negative integers. Combining this information and the functional equation, we can reconstruct the zeta function \(\zeta_k \). The improvements in this paper of the result of Adachi and Komatsu are as follows: In this paper, we use a pseudo-isomorphism instead of an isomorphism, which seems to be natural in Iwasawa theory, and use the module \(X_{k(\zeta_p)} \) (see §2 for its definition), contained in the torsion part of \(Y_{k(\zeta_p)} \), instead of \(Y_{k(\zeta_p)} \). It is well-known that the rank of the free part of \(Y_{k(\zeta_p)} \) determines the degree \([k : \mathbb{Q}] \) which we need in the proof of Theorem 1 of this paper. Here we prove that the smaller module \(X_{k(\zeta_p)}^- \) determines the degree \([k : \mathbb{Q}] \). The Main Conjecture is proved for odd primes, so the main point of Theorem 1 (see §1) is to prove the result of Adachi and Komatsu under the condition “for almost all prime \(p \)” instead of “for every prime \(p \)”.

Secondly, we will prove that the \(\lambda \)-parts of \(X_k \) and \(X_{k'} \) are pseudo-isomorphic for any prime \(p \) if number fields \(k \) and \(k' \) are arithmetically equivalent. It is well-known that arithmetically equivalent number fields \(k \) and \(k' \) have the same normal closure \(L \) over \(\mathbb{Q} \).

Let \(G = Gal(L/\mathbb{Q}) \), and \(L_n \) be the \(n \)-th layer of the basic \(\mathbb{Z}_p \)-extension \(L_\infty \). Komatsu proved that \(X_k \) is isomorphic to \(X_{k'} \) when \(p \) does not divide \([L : \mathbb{Q}] \). The real obstruction in the case \(p \mid [L : \mathbb{Q}] \) occurs when the basic \(\mathbb{Z}_p \)-extension \(Q_\infty \) of \(\mathbb{Q} \) and \(L \) are not linearly disjoint over \(\mathbb{Q} \), since then the Galois group \(G \) does not act on \(X_{L,\lambda} \). To overcome the obstruction, we make \(X_{L,\lambda} \) into a \(\mathbb{Z}_p[G] \)-module by tensoring so that we can show that \(X_{k,\lambda} \) and \(X_{k',\lambda} \) are pseudo-isomorphic as \(\mathbb{Z}_p[[Gal(L_\infty /L)]] \)-modules. (Here the \(\lambda \)-part \(X_{k,\lambda} \) is defined to be \(X_k/\mathbb{Z}_p\)-torsion(\(X_k \)).) Further, we can show that \(X_k \) is isomorphic to \(X_{k'} \) as an Iwasawa module when \(p \) does not divide the order \([L : k] = [L : k'] \). Moreover, we can strengthen our result when \(k \) is a CM field. In fact, we prove that the characteristic polynomials of the modules \(X_k^- \) are the same for arithmetically equivalent CM fields \(k \). This implies at least that their \(\mu^- \)-invariants are the same.

1. Statement of the main theorems

Let \(k \) be a number field, and \(S \) be a finite set of rational primes. Let \(p \) be a prime not in \(S \), let \(\zeta_p \) be a \(p \)-th root of unity, denote \(Gal(k(\zeta_p)/k) \) by \(\Delta \), and write \(\mathbb{Z}_p[[Gal(k(\mu_p^{\infty})/k)]] \) by \(\Lambda[\Delta] \), where \(k(\mu_p^{\infty}) \) is the field obtained by adjoining all the \(p \)-power roots of unity to \(k \).
Theorem 1. Let S be a finite set of primes. Let k be a totally real number field. Suppose we know $X_{k(\zeta)}$ as a $\Lambda[\Delta]$-module up to pseudo-isomorphism for all $p \notin S$; then we can determine the zeta function ζ_k of k.

Arithmetically equivalent fields k and k' have the same normal closure L, and $k \cap \mathbb{Q}_\infty = k' \cap \mathbb{Q}_\infty$, so that the Galois groups of the basic \mathbb{Z}_p-extensions k_∞/k and k'_∞/k' can be identified. Let

$$
\Lambda = \mathbb{Z}_p[[\text{Gal}(k_\infty/k)]] = \mathbb{Z}_p[[\text{Gal}(k'_\infty/k')]] = \mathbb{Z}_p[[T]],
$$

and denote $\mathbb{Z}_p[[((1 + T)^{p^i} - 1)]$ by A_i. By the structure theorem of Λ-modules, every finitely generated torsion Λ-module X is pseudo-isomorphic to a module of the form $\bigoplus_i A/p^{m_i} \bigoplus_j \Lambda/f_j^n(T)$, where $f_j \in \Lambda$ is a distinguished and irreducible polynomial prime to p. Define

$$X_\lambda = X/(\mathbb{Z}_p - \text{torsion}(X)).$$

Note that X_λ is pseudo-isomorphic to $\bigoplus_j \Lambda/f_j^n(T)$.

Theorem 2. Let p be a prime number. Let k and k' be number fields such that $\zeta_k = \zeta_{k'}$. Then the Iwasawa modules $X_{k,\lambda}$ and $X_{k',\lambda}$ are pseudo-isomorphic as Λ_t-modules for some t. Moreover, X_k is isomorphic to $X_{k'}$ as a Λ-module if p does not divide the degree $[L : k] = [L : k']$. If k is a CM field and $\zeta_k = \zeta_{k'}$ for a number field k', then k' is also a CM field and $\text{char} X_k^- = \text{char} X_{k'}^-$ for any odd prime p.

2. The Main Conjecture

A \mathbb{Z}_p-extension of a number field k is an extension k_∞/k with

$$\text{Gal}(k_\infty/k) = \Gamma \simeq \mathbb{Z}_p$$

the additive group of p-adic integers. Let γ be a topological generator of Γ. Let A_n be the p-Sylow subgroup of the ideal class group of the unique n-th layer k_n of the \mathbb{Z}_p-extension k_∞/k. Then $X_k = \lim_{\longrightarrow} A_n$ is isomorphic to the Galois group of the maximal unramified abelian p-extension $L_{\infty,k}$ over k_∞. Extend γ to $\hat{\gamma} \in \text{Gal}(L_{\infty,k}/k)$. Let $x \in X_k$. Then γ acts on x by $x^\gamma = \hat{\gamma}x\hat{\gamma}^{-1}$. Since $\text{Gal}(L_{\infty,k}/k_\infty)$ is abelian, x^γ is well-defined. In some cases, we will use the additive notation γx instead of the multiplicative one x^γ. We make X_k into a $\Delta = \mathbb{Z}_p[[T]]$-module in the following way:

$$(1 + T)x = \gamma x.$$
Let $\mathbb{Q}_\infty/\mathbb{Q}$ be the unique \mathbb{Z}_p-extension of \mathbb{Q}. Then the compositum $k\mathbb{Q}_\infty$ is a \mathbb{Z}_p-extension of k, which is said to be the basic \mathbb{Z}_p-extension of k. Ferrero and Washington [2] proved that the μ-invariant is zero for the basic \mathbb{Z}_p-extension k_∞/k when k is abelian over \mathbb{Q}. Iwasawa [7] constructed a non-basic \mathbb{Z}_p-extension whose μ-invariant is not zero. It has been conjectured that we always have $\mu = 0$ for the basic \mathbb{Z}_p-extension.

Two Λ-modules M and M' are pseudo-isomorphic, written $M \sim M'$, if there is a Λ-module map between them with finite kernel and cokernel. The relation \sim is not reflexive in general. However, it can be shown that it is reflexive for finitely generated Λ-torsion modules. A non-constant polynomial $g(T) \in \Lambda$ is called distinguished if

$$ g(T) = T^n + a_{n-1}T^{n-1} + \cdots + a_0, p|a_i, 0 \leq i \leq n - 1. $$

By the structure theorem of Λ-modules, every finitely generated Λ-module M is pseudo-isomorphic to a module of the form

$$ M' \oplus \left(\bigoplus_{i=1}^s \Lambda/p^{n_i} \right) \oplus \left(\bigoplus_{j=1}^t \Lambda/f_j^{m_j}(T) \right), $$

where $r, s, t, n_i, m_j \in \mathbb{Z}$, and f_j is distinguished and irreducible. The characteristic ideal $(\prod f_j^{m_j})(\prod p^{n_i})\Lambda$ is an invariant of M, which we will denote by $\text{char}(M)$. Define the μ-invariant of M by $\mu = \sum_{i=1}^s n_i$, and the λ-invariant of M by $\sum_{j=1}^t m_j \text{deg}(f_j)$.

Theorem 4. Suppose k_∞/k is a \mathbb{Z}_p-extension and assume $\mu = 0$. Then

$$ X_k \simeq \mathbb{Z}_p^\lambda \oplus (\text{finite } p\text{-group}) $$

as a \mathbb{Z}_p-module.

Proof. See Washington [14, page 286]. \hfill \Box

Let k be a totally real number field. Fix a rational odd prime p, and for every integer $n \geq 0$, let $K_n = k(\zeta_{p^n})$, $K_\infty = \bigcup K_n$, where ζ_{p^n} is a p^n-th root of unity. Put $\Delta = \text{Gal}(K_0/k)$ and $\Gamma = \text{Gal}(K_\infty/K_0) \simeq \mathbb{Z}_p$ then $\text{Gal}(K_\infty/k) = \Delta \times \Gamma$. Let A_n be the Sylow p-subgroup of the ideal class group of K_n, and Y_n be the Galois group M_n/K_n, where M_n is the maximal abelian p-extension of K_n unramified outside primes above p. Define

$$ X_{k(\zeta_p)} = \lim_{\leftarrow} A_n, $$

$$ Y_{k(\zeta_p)} = \lim_{\leftarrow} Y_n, $$

$$ A_\infty = \lim_{\leftarrow} A_n, $$

all inverse limits with respect to the norm maps, the direct limit with respect to the induced map of lifting of ideals. The Iwasawa module $X_{k(\zeta_p)}$ is isomorphic to the Galois group of the maximal unramified abelian p-extension of $K\infty$ over K_∞ and $Y_{k(\zeta_p)} \simeq \text{Gal}(M_\infty/K_\infty)$, where M_∞ is the maximal abelian p-extension of K_∞ unramified outside primes above p.

Define the Iwasawa algebra

$$ \mathbb{Z}_p[\Gamma] = \lim_{\leftarrow} \mathbb{Z}_p[\text{Gal}(K_n/K_0)]. $$
Fix a topological generator γ_0 of Γ. We identify $\mathbb{Z}_p[[\Gamma]]$ with formal power series ring $\Lambda = \mathbb{Z}_p[[T]]$ by $\gamma_0 \to 1 + T$. Write θ for the character with values in \mathbb{Z}_p^\times giving the action of Δ on ζ_p. Let κ be the character giving the action of Γ on the group of p-power roots of unity. Put

$$u = \kappa(\gamma_0).$$

For any integer $i = 0, 1, \ldots, |\Delta| - 1$, define θ^i-idempotent

$$e_i = \frac{1}{|\Delta|} \sum_{\delta \in \Delta} \theta^{-i}(\delta) \delta.$$

The Iwasawa module $Y_k(\zeta_p)$ is a finitely generated Λ-module and $X_k(\zeta_p)$ is a finitely generated torsion Λ-module.

For every odd integer i, there exists a fraction of power series $G(T, \theta^i)$ in the field of fractions of Λ satisfying

$$G(u^s - 1, \theta^i) = L_p(\theta^{1-i}, s),$$

where $L_p(\theta^{1-i}, s)$ is the p-adic L-function of θ^{1-i}. Hence $G(T, \theta^i)$ is characterized by the following relation:

$$G(u^s - 1, \theta^i) = L_k(\theta^{-i+s}, s) \prod_{p \mid \theta^s} (1 - \theta^{-i+s}(p)p^{-s})$$

for every negative integer s. For every odd integer i, let

$$H(T, \theta^i) = \begin{cases} G(T, \theta^i), & i \not\equiv 1 \mod |\Delta|, \\ (1 + T - u)G(T, \theta), & i \equiv 1 \mod |\Delta|. \end{cases}$$

Let

$$\tau = \lim_{n \to \infty} \mu_{p^n}.$$

By Kummer theory, we can prove that

$$e_{1 - 1} Y_k(\zeta_p)(-1) \equiv e_{1 - 1} Y_k(\zeta_p) \otimes \mathbb{Z}_p \text{Hom}_{\mathbb{Z}_p}(\tau, \mathbb{Z}_p) \simeq \text{Hom}(e_i A_\infty, \mathbb{Q}_p/\mathbb{Z}_p).$$

Let $G_i(T)$ be a power series such that $G_i((1 + T)^{-1} - 1)$ is a characteristic power series of $\text{Hom}(e_i A_\infty, \mathbb{Q}_p/\mathbb{Z}_p)$. The following theorem is proved by Wiles [15](the “Main Conjecture”).

Theorem 5. For each odd integer i, $H(T, \theta^i)\Lambda = G_i(T)\Lambda$.

Let $\text{char}(e_i X_k(\zeta_p)) = F_i(T)\Lambda$. By Iwasawa [6], $\text{char}(\text{Hom}(e_i A_\infty, \mathbb{Q}_p/\mathbb{Z}_p)) = \text{char}(e_i X_k(\zeta_p))$. Hence we have the following equivalent form of the Main Conjecture.

Theorem 6. For each odd integer i, $F_i((1 + T)^{-1} - 1)\Lambda = H(T, \theta^i)\Lambda$.

3. PROOF OF THEOREMS

Notations are the same as in section 1. We define the minus-part of $X_k(\zeta_p)$ by

$$X_{\overline{k}(\zeta_p)} = \sum_{i=1 \text{ odd}} |\Delta| e_i X_k(\zeta_p).$$

We state the main theorem of this chapter.
Theorem 7 (= Theorem 1). Let S be a finite set of primes. Let k be a totally real number field. Suppose we know $X^{-}_{k(\zeta_n)}$ as a $\Lambda[\Delta]$-module up to pseudo-isomorphism for all $p \notin S$; then we can determine the zeta function ζ_k of k.

We let ord_p denote the usual valuation on $\overline{\mathbb{Q}}_p$, normalized by $ord_p(p) = 1$, and let $|x| = p^{-ord_p(x)}$.

Lemma 1. Let $\{x_n\}$ be a sequence in \mathbb{C}_p, which converges to $x_0 \neq 0$. Then $ord_p(x_n) = ord_p(x_0)$ for n sufficiently large.

Proof. Since x_n approaches x_0, $|x_n - x_0|$ is strictly less than $|x_0|$ for n sufficiently large. Therefore $|x_n| = max\{|x_n - x_0|, |x_0|\} = |x_0|$ for n sufficiently large. \(\Box\)

Let $\delta_i = \#Gal(k(\zeta_{p_i})/k)$ for an odd prime p_i. Then δ_i is an even integer since k is a totally real number field. When $p = 2$, $\Delta = Gal(k(\zeta_4)/k)$ so that $\delta = 2$. Let S be a finite set of primes which contains the prime number 2.

Proposition 2. The Iwasawa modules $X^{-}_{k(\zeta_n)}$, for all primes not in S, determine the absolute value of ζ_k at negative integers, up to primes in S.

Proof. If n is a negative even integer, then $\zeta_k(n) = 0$. Fix a negative odd integer n. Let p be a prime number not in S. Then $n \equiv i_n \mod |\Delta|$, for some odd integer i_n, $0 \leq i_n \leq |\Delta| - 1$. It is well-known that the values $\zeta_k(n)$ are in \mathbb{Q}. By Theorem 6, we know the value

$$ord_p(G(u^n - 1, \theta^{i_n})) = ord_pL_k(\theta^{-i_n+n}, n)\prod_{p|\Delta} (1 - \theta^{-i_n+n}(p)Np^{-n})$$

$$= ord_pL_k(1, n) = ord_p\zeta_k(n).$$

Hence the absolute value of $\zeta_k(n)$ is determined up to primes in S. \(\Box\)

Remark. By definition, the p-adic L-function $L_p(\theta^i, s)$ of θ^i is the continuous function from $\mathbb{Z}_p\setminus\{1\}$ to \mathbb{C}_p satisfying $L_p(\theta^i, s) = L_k(\theta^i, s)\prod_{p|\Delta}(1 - \theta^i(p)Np^{-s})$ for all rational integers $s \leq 0$ with $s \equiv 1 \mod \delta$, where $\delta = \#Gal(k(\zeta_p)/k)$, for an odd integer p. For all integers i and $n > 1$, $L_k(\theta^i, 1 - n)$ is non-zero if and only if i and n have the same parity.

Let $\sigma_i = p_i - 1$ for an odd prime p_i, and $\sigma_i = 2$ if $p_i = 2$. Then δ_i divides σ_i.

Proposition 2. Let $S = \{p_1, \ldots, p_t\}$ be any finite set of primes. Then there is a sequence $\{a_n\}$ of odd integers such that $ord_{p_i}(\zeta_k(a_n))$ is constant for n sufficiently large for all primes p in S.

Proof. Let $a_n = 1 - 2\sigma_1 \cdots \sigma_t \sigma_1 \cdots \sigma_t p_1 \cdots p_t$; then

$$L_{p_i}(1, a_n) = (\prod_{p|\Delta} (1 - Np^{-a_n}))\zeta_k(a_n),$$

so we know that $\zeta_k(a_n)$ approaches $L_{p_i}(1, 1 - 2\sigma_1 \cdots \sigma_t p_i)$ p_i-adically with n. By the remark above, $L_{p_i}(1, 1 - 2\sigma_1 \cdots \sigma_t) \neq 0$. Therefore there exists a positive integer N such that $ord_{p_i}(\zeta_k(a_n)) = ord_{p_i}(\zeta_k(1 - 2\sigma_1 \cdots \sigma_t))$ for every integer $n > N$, and $i = 1, \ldots, t$. This completes the proof. \(\Box\)

By the functional equation, we have the following equation.

$$A^{\delta}(s/2)^N\zeta_k(s) = A^{1-s}\Gamma((1-s)/2)^N\zeta_k(1-s),$$
where $A = d_k^{1/2} \pi^{-N/2}$, $N = [k : \mathbb{Q}]$, and d_k is the absolute value of the discriminant of k. Hence we have

\[
\zeta_k(1 - s) = A^{2s-1} \Gamma(s/2)^N \Gamma((1 - s)/2)^{-N} \zeta_k(s)
\]

for any positive even integer s. Let n, be a rational number, S be a finite set of primes. We define $(n)_{S-part} = \prod_{p \in S} p^{-ord_p(n)}$, and $(n)_{non-S-part} = n/(n)_{S-part}$. Let $x > 0$ be a real number. Then from the equation (2), we have the following equation;

\[
|s|_\pi < x
\]

Finally, we get the following equation.

\[
|s|_\pi = A^{2s-1} \Gamma(s/2)^N (2^{1-s} \pi^{-N/2}|\zeta_k(s)|
\]

for any positive even integer ℓ.

Now we are ready to prove Theorem 7 by following the idea of Goss and Sinnott [4]. Let n be a rational number, S be a finite set of primes. We define $(n)_{S-part} = \prod_{p \in S} p^{-ord_p(n)}$, and $(n)_{non-S-part} = n/(n)_{S-part}$. Let $x > 0$ be a real number. Then from the equation (2), we have the following equation;

\[
|s|_\pi < x
\]

Now we are ready to prove Theorem 7 by following the idea of Goss and Sinnott [4]. Let n be a rational number, S be a finite set of primes. We define $(n)_{S-part} = \prod_{p \in S} p^{-ord_p(n)}$, and $(n)_{non-S-part} = n/(n)_{S-part}$. Let $x > 0$ be a real number. Then from the equation (2), we have the following equation;

\[
|s|_\pi < x
\]

By Stirling’s formula,

$$
\frac{B^s}{\Gamma(s)} \to 0 \text{ as } s \to \infty
$$

for any real $B > 0$. Moreover, $\zeta_k(\ell) \to 1$ as $\ell \to \infty$. Choose a sequence $\{a_n\}$ as in Proposition 2, and let $a_n = 1 - \ell_n$. By Propositions 1 and 2, we know the value of

\[
|s|_\pi < x
\]

up to an (unknown) constant independent of n, as long as n is sufficiently large. The right-hand side of the equation (3) approaches 0 as ℓ goes to ∞ if $N < x$, and goes to ∞ if $N > x$. Hence the same is true of (4). Hence we can read off N. Going back to the equation (2) with $\ell = \ell_n$, we can determine A;

\[
A = \lim_{n \to \infty} \exp\left[\frac{1}{(2\ell_n - 1)} \log \frac{|s|_\pi < x}{\Gamma(\ell_n)^N (2^{1-\ell_n}) \pi^{-N/2}|\zeta_k(\ell_n)|}
ight]
\]

by Propositions 1 and 2. Hence we know the discriminant d_k. Here $1 - a_n$ is a multiple of 4 since s_1 is even. Since the value $\cos(4m\pi/2)$ for integer m and the values of zeta function at positive integers not equal to 1 are positive, we know, by the equation (1), the values $\zeta_k(a_n)$ are positive. By Proposition 1, we know the non-S-part of the values of zeta function at a_n, and by Proposition 2, the S-part is constant for n sufficiently large. Hence, with the functional equation, we can determine the S-part of the values of the zeta function at the sequence a_n for large n, i.e., we have:

\[
\zeta_k(1 - \ell_n)_{S-part} = \lim_{m \to \infty} \frac{A^{2\ell_m - 1} (\Gamma(\ell_m) 2^{1-\ell_m} \pi^{-1/2} \cos((\ell_m \pi)/2))^N \zeta_k(\ell_m)}{\zeta_k(1 - \ell_m)_{non-S-part}}
\]

for n sufficiently large. Therefore, by Proposition 1, we know the values $\zeta_k(1 - \ell_n)$ for n sufficiently large.
Let
\[\zeta_k(s) = \sum b_n/n^s. \]

Then we have
\[\sum_{n=1}^{\infty} b_n/n^s = A^{2(1-\ell_n)-1}\Gamma((1-\ell_n)/2)^N \Gamma((\ell_n)/2)^{-N} \zeta_k(1-\ell_n). \]

We know the values of the right-hand side of the above equation for \(n \) sufficiently large, which will be denoted by \(c_n \). We know \(b_1 = 1 \), and
\[b_2 = \lim_{n \to \infty} (c_n - 1)2^{\ell_n}. \]

Continuing the above process, we can determine all the coefficients \(b_m \)'s, so we can determine the zeta function \(\zeta_k(s) \). This completes the proof of Theorem 7.

Let \(k, k' \) be totally real number fields, and let \(S \) be a finite set of primes containing all the primes which are ramified in \(k \) and \(k' \). Then the number fields \(k \) and \(k' \) are linearly disjoint with \(\mathbb{Q}(\mu_p) \) over \(\mathbb{Q} \) for \(p \notin S \). Let \(K_\infty = k(\mu_p) \), and let \(K'_\infty = k'(\mu_p) \). Then we may identify \(\text{Gal}(K_\infty/k) \) and \(\text{Gal}(K'_\infty/k') \) (they are both naturally isomorphic to \(\text{Gal}(\mathbb{Q}(\mu_p))/\mathbb{Q} \)), so that we may compare the Iwasawa modules \(X_{k(\zeta_p)} \) and \(X_{k'(\zeta_p)} \) as \(\Lambda[\Delta] \)-modules. Then, from Theorem 7, we have the following corollary.

Corollary 1. Let \(k \) and \(k' \) be totally real number fields. Let \(S \) be a finite set of primes containing all the primes which are ramified in \(k \) and \(k' \). Assume that the two Iwasawa modules
\[X_{k(\zeta_p)}^{-} \sim X_{k'(\zeta_p)}^{-} \]
are pseudo-isomorphic as \(\Lambda[\Delta] \)-modules for all \(p \notin S \); then
\[\zeta_k = \zeta_k'. \]

4. Arithmetic equivalence

Let \(k \) be a number field, and \(\mathfrak{O}_k \) be its ring of integers. Let \(p\mathfrak{O}_k = p_1^{e_1} \cdots p_g^{e_g} \) be the decomposition of a prime number \(p \in \mathbb{Z} \), let \(f_i = ([\mathfrak{O}_k/p_i] : \mathbb{Z}/p) \) be the degree of \(p_i \), and \(e_i \) be the ramification indices, numbered so that \(f_i \leq f_{i+1} \). Then the tuple \(A = (f_1, \ldots, f_g) \) is called the splitting type of \(p \) in \(k \). We define a set \(P_k(A) \) by \(P_k(A) = \{ p \in \mathbb{Z} : p \text{ has splitting type } A \text{ in } k \} \). The notation \(S \equiv T \) will be used to indicate that these two sets differ by at most a finite number of elements. Two subgroups \(H, H' \) of a finite group \(G \) are said to be Gassmann equivalent in \(G \) when
\[|c^G \cap H| = |c^G \cap H'| \]
for every conjugacy class \(c^G = \{ g \in G \} \) in \(G \) and \(c \) in \(G \). Let \(k \) and \(k' \) be number fields, and \(L \) be a Galois extension of \(\mathbb{Q} \) containing \(k \) and \(k' \). Write \(H = \text{Gal}(L/k), \ H' = \text{Gal}(L/k') \) and \(G = \text{Gal}(L/\mathbb{Q}) \). The normal core of \(k \) is the largest subfield of \(k \) normal over \(\mathbb{Q} \). It is the fixed field of the subgroup \(\langle H^s \sigma \in \text{Gal}(L/\mathbb{Q}) \rangle \) generated by all conjugates of \(H \). We call \(k, k' \) arithmetically equivalent if \(H \) and \(H' \) are Gassmann equivalent in \(G \). Note that this definition is independent of the choice of \(L \) and that if \(k, k' \) are arithmetically equivalent, then they have the same normal closure.

Lemma 2 (Perlis [10]). Two arithmetically equivalent number fields \(k \) and \(k' \) have the same normal core.
With this notation we have the following theorem.

Theorem 8. The following are equivalent.

(a) \(\zeta(s) = \zeta(s') \).
(b) \(P_k(A) = P_k(A') \) for every tuple \(A \).
(c) \(P_k(A) \cong P_k(A') \) for every tuple \(A \).
(d) \(H = \text{Gal}(L/k) \) and \(H' = \text{Gal}(L'/k') \) are Gassmann equivalent in \(G \).
(e) \(\mathbb{Q}[H \backslash G] \) is isomorphic to \(\mathbb{Q}[H' \backslash G] \) as a \(\mathbb{Q}[G] \)-module.

Proof. See Komatsu [8]. \(\square \)

Let \(H \) and \(H' \) be Gassmann equivalent. Let \(\{ \rho_i, \ldots, \rho_t \} \) and \(\{ \rho_i', \ldots, \rho'_t \} \) be right coset representatives of \(H \backslash G \) and \(H' \backslash G \), respectively. Then we have two homomorphisms \(\pi, \pi' \) from \(G \) into symmetric group \(S_t \) given by \(\pi_g(i) = j \), where \(H\rho_i g = H\rho_j \), and \(\pi'_g(j) = j \), where \(H'\rho'_i g = H'\rho'_j \). Let \(D \) and \(D' \) be the linear representations of \(G \) induced from the unit representations of \(H \) and \(H' \). Their characters \(\chi, \chi' \) are given by

\[
\chi(g) = |g^G \cap H||C_G(g)|/|H|,
\]
\[
\chi'(g) = |g^{G'} \cap H'||C_{G'}(g)|/|H'|,
\]
for \(g \in G \), where \(C_G(g) \) is the centralizer. By Theorem 8, \(\chi = \chi' \) so that the representations \(D, D' : G \to GL_t(\mathbb{Q}) \) are isomorphic. Thus there is a rational \(t \times t \) matrix \(M \in GL_t(\mathbb{Q}) \) satisfying the following relation:

\[
D(g)M = MD'(g)
\]
for every \(g \in G \). By clearing the denominators, we may assume that \(M \) is in \(GL_t(\mathbb{Z}) \). A matrix \(M = (m_{ij}) \) satisfies the above equation if and only if \(m_{ij} = m_{\pi_g(i), \pi'_g(j)} \) for all \(g \in G \). With the same notation as in Theorem 8, we have the following proposition.

Proposition 3. Let \(k \) and \(k' \) be arithmetically equivalent fields. Then there is an exact sequence of right \(\mathbb{Z}_p[G] \)-modules

\[
0 \to \mathbb{Z}_p[H \backslash G] \to \mathbb{Z}_p[H' \backslash G] \to A \to 0,
\]
where \(A \) is a finite right-\(\mathbb{Z}_p[G] \)-module.

Proof. Let \(M \) be a matrix satisfying the condition

\[
(5) \quad m_{ij} = m_{\pi_g(i), \pi'_g(j)}.
\]
Define a map \(\varphi \) from \(\mathbb{Z}_p[H \backslash G] \to \mathbb{Z}_p[H' \backslash G] \) by

\[
\varphi(H\rho_i) = m_{i1}H'\rho'_1 + \cdots + m_{it}H'\rho'_t, \quad i = 1, \ldots, t,
\]
so \(\varphi \) may be represented by a matrix \(M \) with a basis \(\{ \rho_1, \ldots, \rho_t \} \) and \(\{ \rho'_1, \ldots, \rho'_t \} \). By the equation (5), \(\varphi \) is a right-\(\mathbb{Z}_p[G] \)-module homomorphism. Since \(M \) is invertible, \(\varphi \) is injective. Moreover, we have the following equation.

\[
\det M \begin{pmatrix} H'\rho'_1 \\ \vdots \\ H'\rho'_t \end{pmatrix} = (\det M)M^{-1} \begin{pmatrix} \varphi(H\rho_1) \\ \vdots \\ \varphi(H\rho_t) \end{pmatrix}
\]
Hence cokernel φ is killed by $det M$, but cokernel φ is a finitely generated \mathbb{Z}_p-module. Therefore cokernel φ is finite. This completes the proof. \hfill \square

Remark. If p does not divide the order of H, then we can take A to be zero. In the case, both $\mathbb{Z}_p[H \backslash G]$ and $\mathbb{Z}_p[H' \backslash G]$ are projective $\mathbb{Z}_p[G]$-modules. A projective module is determined by its character χ; hence, they are isomorphic. For details, see Komatsu [8].

Write

$$\Lambda_t = \mathbb{Z}_p[(1 + T)^{p^t} - 1] ,$$

where $\Lambda_0 = \Lambda = \mathbb{Z}_p[[T]]$. For the rest of this paper, p is a fixed prime number, and let L be a normal closure of k and k'. Let $L_0 \subseteq L_1 \subseteq L_2 \subseteq \cdots \subseteq L_\infty$ be the basic \mathbb{Z}_p-extension over the field $L = L_0$. Put $\Gamma = \Gal(L_\infty/L) \simeq \mathbb{Z}_p$.

When p does not divide $[L : \mathbb{Q}]$, we can identify the following Galois groups $\Gal(k_\infty/k), \Gal(k'_\infty/k')$ and $\Gal(L_\infty/L)$. Komatsu proved that two Iwasawa modules X_k and $X_{k'}$ are isomorphic as $\mathbb{Z}_p[[\Gamma]] = \Lambda_L$-modules when p does not divide $[L : \mathbb{Q}]$. Let $\Lambda_k = \mathbb{Z}_p[[\Gal(k_\infty/k)]]$. Now for any prime p including the above exceptional case, regarding Λ_L as a subring of Λ_k, we have $\Lambda_L = \Lambda_{k,t}$ for some $t \geq 0$. In this chapter, we will prove that the Iwasawa modules $X_{k,\lambda}$ and $X_{k',\lambda}$ are pseudo-isomorphic as Λ_L-modules for any prime p.

5. **Proof of theorems**

Let k be a number field, and let L be the Galois closure of k over \mathbb{Q}. In addition, we assume that $L \cap k_\infty = k$. Write $\Gal(L/k) = H$. Since $L \cap k_\infty = k$, the group H can be considered as $\Gal(L_n/k_n)$ for any $n \geq 0$, and it commutes with Γ. Hence the group H acts on X_L. Regard Λ_L as a subring of Λ_k, so that Λ_L acts on X_k.

Recall that $X_\lambda = X/[\mathbb{Z}_p - \text{torsion}(X)]$ for a Λ-module X.

Proposition 4. The Iwasawa modules $X^H_{L,\lambda}$ and $X_{k,\lambda}$ are pseudo-isomorphic as Λ_L-modules.

Proof. Let $|H| = [L : k] = p^a m$, where $(m, p) = 1$. For each n, we choose $c_n |H| \equiv p^n \mod p^{n+1}$, so that p^n exceeds the order of $A_{n,L}$ and $A_{n,k}$, where $A_{n,M}$ is the p-Sylow subgroup of the ideal class group of the n-th layer of the basic \mathbb{Z}_p-extension over a number field M. Let i be the lifting map from $A_{n,k}$ to $A^H_{n,L}$, and N be the norm map on ideal classes. Let β_n be an element of the kernel of the map i. Then

$$0 = c_n N \circ i(\beta_n) = p^n \beta_n ,$$

so that the kernel of i is killed by p^n for any n. Let γ_n be in $A^H_{n,L}$. We have the following equation:

$$i(c_n N \gamma_n) = i(c_n |H|) \gamma_n = p^n \gamma_n ,$$

so that the cokernel of i is killed by p^n for any n. The lifting map i commutes with the inverse limit, and the map $i : \lim \rightarrow A_{n,k} \longrightarrow \lim \rightarrow A^H_{n,L}$ is a Λ_L-homomorphism since H and Γ commute with each other. Define the induced map i^* of i from $X_{k,\lambda}$ to $X^H_{L,\lambda}$ by $i^*(\overline{x}) = i(\overline{x})$, where \overline{x} is the reduction map from X to X_λ. The map i^* is well-defined since the image of the \mathbb{Z}_p-torsion of X_k is contained in the \mathbb{Z}_p-torsion of X^H_L. The map i^* is injective: if $i^*(\overline{x}) = 0$, then $p_m i^*(x) = 0$ for some integer m; hence, by (6), $p_t x = 0$ for some integer t, which means that x is in the \mathbb{Z}_p-torsion of X_k i.e. $x \equiv 0$ in $X_{k,\lambda}$. Let \overline{y} be any element of $X^H_{L,\lambda}$. Then, by the above formula
Proof. Let \(\Gamma = \text{Gal}(k_\infty/k) \) be a topological generator of \(\text{Gal}(k_\infty/k) \). Then \(\gamma' = \phi \gamma \phi^{-1} \) is a topological generator of \(\text{Gal}(k'_\infty/k') \). We make \(X_k \) and \(X_{k'} \) into \(\Lambda = \mathbb{Z}_p[[T]] \)-modules in the following way.

\[
\gamma x = (1 + T)x \quad \text{and} \quad \gamma'x' = (1 + T)x',
\]

where \(x \in X_k \) and \(x' \in X_{k'} \).

Proposition 5. Let \(k \) and \(k' \) be two isomorphic number fields. Then the Iwasawa modules \(X_k \) and \(X_{k'} \) are isomorphic as \(\Lambda \)-modules for any prime number \(\ell \).

Proof. Let \(e \) be an integer such that \(\mathbb{Q}_\infty \cap k = \mathbb{Q}_e \) and \(k_n = k_{\mathbb{Q}_{n+e}} \) be the \(n \)-th layer of the basic \(\mathbb{Z}_p \)-extension of \(k \). Since \(\mathbb{Q}_{n+e} \) is the normal extension of \(\mathbb{Q} \), \(\phi(k_n) = k'_n \). Let \(x = (x_1, \ldots, x_n, \cdots) \in X_k \). Let the fractional ideal \(a_n \) be a representative of \(x_n \). Define \(\phi(x_n) \) to be the class of \(a_n^p \). Then

\[
N\gamma_n \circ \phi(x_n) = (1 + \gamma'_n + \cdots + \gamma_{n+p-1}^p)\phi(x_n)
\]

\[
= \phi(1 + \gamma_n + \cdots + \gamma_{n+p-1})(x_n) = \phi \circ N\gamma_n(x_n).
\]

Hence \(\phi \) induces a map from \(X_k \) to \(X_{k'} \) which is also denoted by \(\phi \). Moreover, it is a \(\Lambda \)-module homomorphism:

\[
T \cdot \phi(x) = (\gamma' - 1)\phi(x) = \gamma'\phi(x)/\phi(x) = \phi(\gamma x)/\phi(x) = \phi((\gamma - 1)x) = \phi(T \cdot x).
\]

The map \(\phi \) is trivially bijective. This completes the proof.

Lemma 4 (Komatsu). Let \(k \) and \(k' \) be number fields such that \(\zeta_k = \zeta_{k'} \). Let \(K \) be a finite Galois extension of \(\mathbb{Q} \). Then we have \(\zeta_{k,K} = \zeta_{k',K} \).

Proof. See Komatsu [8].

Let \(L \) be the Galois closure of \(k \) and \(k' \), and \(L_{\infty}/L \) be the basic \(\mathbb{Z}_p \)-extension. Put \(\Gamma = \text{Gal}(L_{\infty}/L) \) and \(\Lambda_L = \mathbb{Z}_p[[\Gamma]] \).

Now we restate the main theorem of this section.

(7), \(p^n \gamma = p^n \gamma = i(x) = i^*(x) \) for some \(\pi \) in \(X_{k,\lambda} \). Since \(X_{k,\lambda} \) and \(X_{L,\lambda}^H \) are finitely generated \(\mathbb{Z}_p \)-modules, the induced map \(i^* \) is a pseudo-isomorphism.
Theorem 9. Let p be a prime number. Let k and k' be number fields such that $\zeta_k = \zeta_{k'}$. Then the Iwasawa modules

$$X_{k,\lambda} \sim X_{k',\lambda}$$

as $\Lambda_L = \Lambda_{k,t}$-modules for some integer $t \geq 0$.

Proof. Let L be the Galois closure of k and k'. Let e be an integer such that $k \cap Q_\infty = Q_e$. By Lemma 2, $k' \cap Q_\infty = Q_e$. Let m be the largest integer such that $Q_m \subset L$, where Q_m is the m-th layer of the basic Z_p-extension Q_∞ of Q. Put $k_m = kQ_m$ and $k'_m = k'Q_m$. By Lemma 4,

$$\zeta_{k_m} = \zeta_{k'_m}.$$

Let $G = \text{Gal}(L/Q)$, $K = \text{Gal}(L/Q_m)$, $H = \text{Gal}(L/k_m)$, and $H' = \text{Gal}(L/k'_m)$. By the above equation (8) and Theorem 8, two subgroups H and H' of G are Gassmann equivalent in G. Hence we have an exact sequence by Proposition 3:

$$0 \to Z_p[H\backslash G] \to Z_p[H'\backslash G] \to A \to 0,$$

where A is a finite $Z_p[G]$-module. Also note that K is normal in G, and that H and H' act on X_L. Since $L \cap Q_\infty = Q_m$, K acts on $X_{L,\lambda}$ so that $X_{L,\lambda}$ is a right $Z_p[K]$-module. Consider $Z_p[G]$ as a left $Z_p[K]$-module. Then we can form the tensor product:

$$X' = X_{L,\lambda} \otimes_{Z_p[K]} Z_p[G].$$

Then X' is a right $Z_p[G]$-module via the action of $Z_p[G]$ on the second factor. We have an exact sequence from the equation (9).

$$0 \to \text{Hom}_{Z_p[G]}(A, X') \to \text{Hom}_{Z_p[G]}(Z_p[H'\backslash G], X') \to \text{Hom}_{Z_p[G]}(Z_p[H\backslash G], X') \to \text{Ext}^1_{Z_p[G]}(A, X') \to \cdots.$$

First, we will prove that

$$\text{Hom}_{Z_p[G]}(Z_p[H\backslash G], X') \sim \bigoplus_{p^n\text{-copies}} X_{k,\lambda}$$

as a $\Lambda = Z_p[[\text{Gal}(L_\infty/L)]]$-module, where $p^n = [G : K]$. Let $\{\rho_1, \ldots, \rho_p\}$ be right coset representatives of $K \backslash G$ with $\rho_1 = 1$. Then

$$X' \simeq X_{L,\lambda} \otimes \rho_1 + \cdots + X_{L,\lambda} \otimes \rho_p,$$

as a Λ_L-module. Note that this is a direct sum. Let $h \in H$. Since $h \in K$ and K is normal in G, $\rho_i h \rho_i^{-1} \in K$ for any $\rho_i \in G$. Let $x \in X_{L,\lambda}$.

$$(x \otimes \rho_i)h = x \otimes \rho_i h$$

$$= x \otimes \rho_i h \rho_i^{-1} \rho_i$$

$$= x^{\rho_i h \rho_i^{-1}} \otimes \rho_i \in X_{L,\lambda} \otimes \rho_i.$$

Let $x_1 \otimes \rho_1 + \cdots + x_p \otimes \rho_p \in X'$, $g \in G$ and $\gamma \in \Gamma$. Then $\rho_i g = k_i \rho_i \pi_g(i)$ for some permutation π_g on $\{1, \ldots, p^m\}$, where $k_i \in K$. Since γ commutes with k_i,
we have the following equation:
\[(\sum x_i \otimes \rho_i)g\gamma = (\sum x_i^{k_i} \otimes \rho_{\pi_i(i)})\gamma \]
\[= (\sum x_i^{k_i} \otimes \rho_{\pi_i(i)}) = (\sum x_i^{j_i} \otimes \rho_{\pi_i(i)}) \]
\[= (\sum x_i^{j_i} \otimes \rho_{\pi_i(i)})g = (\sum x_i \otimes \rho_i)g \gamma .\]

Therefore \(\Lambda \) commute with the action of \(G \) on \(X' \). By Lemma 3, the remark below Lemma 3, and the above equation (10), we have:

\[\text{Hom}_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H \setminus G], X') = (X')^H = \sum (X_{L,\lambda} \otimes \rho_i)^H . \]

We have a \(\Lambda \)-module isomorphism: \(\phi : X_{L,\lambda} \otimes \rho_i \rightarrow X_{L,\lambda} \) by sending \(x \otimes \rho_i \rightarrow x \).

Again by (10),
\[\sum (X_{L,\lambda} \otimes \rho_i)^H \simeq \sum X_{L,\lambda}^{\rho_i H\rho_i^{-1}} . \]

Since \(H \) and \(\rho_i H \rho_i^{-1} \) are conjugate in \(G \), their fixed fields are isomorphic. By Propositions 4 and 5, we have the following equation.

\[\text{Hom}_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H \setminus G], X') \sim \bigoplus_{p^m-\text{copies}} X_{k,\lambda} . \]

By the same way, we have the following equation.

\[\text{Hom}_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H' \setminus G], X') \sim \bigoplus_{p^m-\text{copies}} X_{k',\lambda} . \]

By Theorem 4,
\[X' \simeq \mathbb{Z}_p^{m-\lambda} \oplus \text{finite } p\text{-group}. \]

Denote by \(\psi \) the map from
\[\text{Hom}_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H' \setminus G], X') \]
to
\[\text{Hom}_{\mathbb{Z}_p[G]}(\mathbb{Z}_p[H \setminus G], X') . \]

Since \(\text{Hom}_{\mathbb{Z}_p[G]}(A, X') \subseteq \text{Hom}_{\mathbb{Z}_p}(A, X') \) and the right-hand side is finite, the kernel of the map \(\psi \) is finite. The cokernel of the map \(\psi \), which is a finitely generated \(\mathbb{Z}_p \)-module, is contained in \(\text{Ext}^1_{\mathbb{Z}_p[G]}(A, X') \). By definition, \(\text{Ext}^1_{\mathbb{Z}_p[G]}(A, X') \) is killed by \#A. Hence, the cokernel is finite. Therefore we proved that \(\bigoplus_{p^m-\text{copies}} X_{k',\lambda} \) is pseudo-isomorphic to \(\bigoplus_{p^m-\text{copies}} X_{k,\lambda} \). This implies, by the structure theorem of \(\Lambda \)-modules, \(X_{k,\lambda} \) is pseudo-isomorphic to \(X_{k',\lambda} \). Hence we proved the theorem for \(t = m - e \).

\(\square \)

Remark. If \(p \) does not divide \([L : k] = [L : k'] \), then \(X_k \) is isomorphic to \(X_{k'} \).

In fact, \(p \) does not divide \(|H| = |H'| \) in the case, so \(\alpha \) in Proposition 4 is zero, and \(\mathbb{Z}_p[H \setminus G] \simeq \mathbb{Z}_p[H' \setminus G] \), so that \(A \) is zero in the proof of Theorem 9. Therefore pseudo-isomorphisms can be replaced by isomorphisms in the above theorems and we can work with \(X_k \) instead of \(X_{k,\lambda} \). Moreover \(t = 0 \) in the case; in other words, \(X_k \simeq X_{k'} \) as \(\Lambda_k \)-modules.

Remark. The ring \(\mathbb{Z}_p[\text{Gal}(L_\infty/L)] = \Lambda_L \) can be viewed as a subring \(\Lambda_{k,t} \) of
\[\mathbb{Z}_p[\text{Gal}(k_\infty/k)] \simeq \mathbb{Z}_p[\text{Gal}(k_\infty'/k')] = \Lambda_k \]
for some integer \(t \geq 0 \). The Iwasawa modules \(X_k \) and \(X_{k'} \) are actually \(\Lambda_k \)-modules. We showed that \(X_{k,\lambda} \simeq X_{k',\lambda} \) as a \(\Lambda_L \)-module, not as a \(\Lambda_k \)-module. In general, two
\[X = \bigoplus_{p^i\text{-copies}} \Lambda/T \]

and

\[Y = \Lambda/((1 + T)^{p^j} - 1). \]

They are pseudo-isomorphic to

\[\bigoplus_{p^i\text{-copies}} \Lambda_t/Z \]

as modules, where \(Z = (1 + T)^{p^j} - 1 \). However, there is a relation between the characteristic polynomials of two \(\Lambda = \mathbb{Z}_p[[T]] \)-modules which are pseudo-isomorphic as \(\Lambda_t = \mathbb{Z}_p[[1 + T)^{p^j} - 1]] \)-modules. By the Weierstrass Preparation Theorem, every power series \(f(T) \in \Lambda \) can be expressed by the following way:

\[f(T) = p^m h(T) U(T), \]

where \(h(T) \) is a distinguished polynomial and \(U(T) \) is a unit in \(\Lambda \). Let \(X \) be a finitely generated \(\Lambda \)-module. When \(X \) is considered as a \(\Lambda_t \)-module, we denote it by \(X_t \), and its characteristic polynomial by \(\text{char}_Z(X_t) \).

Proposition 6. Let \(X \) and \(Y \) be finitely generated \(\Lambda \)-modules and let \(\text{char}(X) = p^{\mu X} f_X(T) \) and \(\text{char}(Y) = p^{\mu Y} f_Y(T) \). Assume that they are pseudo-isomorphic as \(\Lambda_t \)-modules. Then we have

\[\mu_X = \mu_Y \text{ and } \prod_{\zeta} f_X(\zeta(1 + T) - 1) = \prod_{\zeta} f_Y(\zeta(1 + T) - 1), \]

where the product runs through all \(p^d \)-th roots of unity.

Proof. The \(\Lambda \)-module \(\Lambda/p^m \) is \((\Lambda/p^m)^{p^j} \) as a \(\Lambda \)-module. This proves \(\mu_X = \mu_Y \). Hence, by the structure theorem of \(\Lambda \)-modules, it is sufficient to prove the theorem in the cyclic case: \(X = \Lambda/f^n(T) \), where \(f(T) \) is irreducible. Let \(Z = (1 + T)^{p^j} - 1 \). As a \(\Lambda_t \)-module, \(X_t \) is pseudo-isomorphic to a module of the form \(\bigoplus_{i=1}^n \Lambda_t/f_i(Z) \). Consider \(\prod_{\zeta} f_i(\zeta(1 + T) - 1) \). Then this function is in \(\mathbb{Z}_p[Z] \). In fact, let \(f(T) = \prod_{i=0}^n (T - \alpha_i) \); then

\[\prod_{\zeta} f(\zeta(1 + T) - 1) = \prod_{i=0}^n (Z - w_i), \]

where \(w_i = (1 + \alpha_i)p^j - 1 \). Then, we know that the \(w_i \)'s are conjugate to each other. Write \(g(Z) = \prod_{\zeta} f(\zeta(1 + T) - 1) \). Note that \(\deg f = \deg g \) and \(f^n(T) \) divides \(g^n(Z) \). Since \(f(T) \) is irreducible, \(g(Z) \) is a power of an irreducible polynomial \(k(Z) \); that is, \(g(Z) = k^d(Z) \). The module \(X_t \) is killed by \(g^n(Z) \), so each \(f_i(Z) \) divides \(g^n(Z) \). Hence \(f_i(Z) \) is a power of the polynomial \(k(Z) \). Therefore \(\text{char}_Z(X_t) = f_i(Z) \cdots f_s(Z) \) is a power of \(k(Z) \). Let \(\text{char}_Z(X_t) = k^r(Z) \). The \(\mathbb{Z}_p \)-rank of \(X \) is \(n[\deg f] \). As a \(\Lambda_t \)-module \(X_t \), it has the same \(\mathbb{Z}_p \)-rank, that is, \(r[\deg k] \). Hence we have \(r[\deg k] = n[\deg f] = n[\deg g] = nd[\deg k] \). From this, we have \(r = nd \), so that \(\text{char}_Z(X_t) = k^r(Z) = k^{nd}(Z) = g^n(Z) = \prod f^n(\zeta(1 + T) - 1) \). This completes the proof, since \(X_t \) and \(Y_t \) are pseudo-isomorphic as \(\Lambda_t \)-modules, so their characteristic polynomials in \(Z \) are the same. \(\square \)
Remark. W. Sinnott pointed out to me
\[f_i(T) = k(Z)^n \quad \text{and} \quad s = \deg_T f(T)/\deg_Z k(Z). \]

The \(\mu \)-invariant is conjectured to be zero for every basic \(\mathbb{Z}_p \)-extension. Assuming the conjecture, we proved the following statement:

Theorem 10. Assume that \(\mu \) is zero for every basic \(\mathbb{Z}_p \)-extension. Let \(k \) and \(k' \) be arithmetically equivalent fields, and \(p \) be a prime number. Then
\[X_k \sim X_{k'}, \]
as \(\Lambda_L = \Lambda_{k,t} \)-modules for some \(t \).

6. **In the CM Field Case**

A CM field is a totally imaginary quadratic extension of a totally real number field. Let \(k \) be CM, \(k_+ \) its maximal real subfield. Let \(J \) denote complex conjugation. Fix an odd prime \(p \). Recall that \(X_L \) is the Galois group of the maximal unramified abelian \(p \)-extension over the basic \(\mathbb{Z}_p \)-extension \(L_\infty \) of a number field \(L \), and \(\Lambda = \mathbb{Z}_p[[T]] \). Define
\[X_k = (1 - J)X_k. \]

In this section, we will prove

Theorem 11. Let \(k \) be a CM field, and \(k' \) be a number field arithmetically equivalent to \(k \). Then \(k' \) is a CM field, and
\[\text{char}(X_k)\Lambda = \text{char}(X_{k'})\Lambda. \]

Let \(\varepsilon \) be an odd quadratic Artin character of \(\text{Gal}(k/k_+) \). Write
\[\Delta = \text{Gal}(k(\zeta_p)/k), \]
\[e_0 = 1/|\Delta| \sum_{\delta \in \Delta} \delta. \]

Let \(\gamma \) be a topological generator for \(\text{Gal}(k(\zeta_p)/k(\zeta_p)) \), and let \(u \in \mathbb{Z}_p^\times \) be such that \(\zeta^u = \zeta^n \) for any \(p \)-power roots of unity. There exists a quotient of power series \(G_{\varepsilon}(T) \in \Lambda \) such that
\[L_p(1 - s, \varepsilon \theta) = G_{\varepsilon}(u^s - 1), \]
for \(s \in \mathbb{Z}_p - \{0\} \). Here the \(p \)-adic \(L \)-function \(L_p(s, \varepsilon \theta) \) is characterized by the following interpolation property:
\[L_p(1 - n, \varepsilon \theta) = L_{k_+}(1 - n, \varepsilon) \prod_{p \in S} (1 - \varepsilon(p)Np^{n-1}), \]
for \(n \equiv 1 \mod p - 1 \), where \(S \) is the set of primes of \(k_+ \) above \(p \). To make sense of this recall that for a complex character \(\varepsilon \) we can write \(L_{k_+}(1 - n, \varepsilon) \) as a sum
\[L_{k_+}(1 - n, \varepsilon) = \sum_{\sigma \in \text{Gal}(k/k_+)} \varepsilon(\sigma)\zeta_{k_+}^{\sigma} (\sigma, 1 - n), \]
where the partial zeta function \(\zeta_{k_+}^{\sigma} (\sigma, 1 - n) \) is a rational number by a result of Klingen and Siegel. By a result of Wiles [15], we have the following

Theorem 12.
\[\text{char}(e_0 X_{k(\zeta_p)})^-\Lambda = G_{\varepsilon}(u(1 + T)^{-1} - 1)\Lambda. \]
Lemma 5. Let \(k \) be a CM field, and \(k' \) be a number field arithmetically equivalent to \(k \). Then \(k' \) is a CM field, and

\[
\zeta_{k_+} = \zeta_{k'_+}.
\]

Proof. Let \(L \) be the Galois closure of \(k \). Then \(L \) is a CM field. Write \(H = \text{Gal}(L/k) \) and \(H' = \text{Gal}(L/k') \). Since the complex conjugation \(J \) is a center of \(\text{Gal}(L/\mathbb{Q}) \), the fixed field of \(H \times \langle J \rangle \) is the maximal real subfield \(k_+ \). We know that \(k' \) is totally imaginary because \(k' \) is arithmetically equivalent to \(k \). By assumption, \(H \) and \(H' \) are Gassmann equivalent; hence

\[
|c^G \cap H| = |c^G \cap H'|,
\]

for any \(c \in G \). Note that \(c^G \cap H \times \langle J \rangle \) is a disjoint union of \(c^G \cap H \) and \(c^G \cap H J \) for any \(c \in G \). Since the map given by \(gcg^{-1} \rightarrow gcJg^{-1} \) is injective, we have

\[
|c^G \cap H| = |(cJ)^G \cap HJ|.
\]

Therefore

\[
|c^G \cap HJ| = |(cJ)^G \cap HJ| = |(cJ)^G \cap H| = |c^G \cap H|^J = |c^G \cap H'|.
\]

Hence

\[
|c^G \cap H\langle J \rangle| = |c^G \cap H| + |c^G \cap HJ| = |c^G \cap H'| + |c^G \cap H'J| = |c^G \cap H'\langle J \rangle|.
\]

Therefore, \(H\langle J \rangle \), \(H'\langle J \rangle \) are Gassmann equivalent, which means the number field \(k' \) has a totally real subfield \(k'_+ \) arithmetically equivalent to \(k_+ \). This completes the proof.

Proof of Theorem 11. By Theorem 12 and the discussion above Theorem 12, \(\text{char}(e_0 X_{k(\zeta_p)})^{-} \) is determined by \(L_{k_+}(s, \varepsilon) \). By Lemma 5,

\[
L_{k_+}(s, \varepsilon) = \zeta_k/\zeta_{k_+} = \zeta_{k'}/\zeta_{k'_+} = L_{k'_+}(s, \varepsilon).
\]

This completes the proof by the lemma below.

Lemma 6.

\[
e_0 X_{k(\zeta_p)} \simeq X_k.
\]

Proof. Let \(L_{\infty, k(\zeta_p)} \) be the maximal unramified abelian \(p \)-extension of \(k(\zeta_p) \). Let \(Y_0 \) be the subfield of \(L_{\infty, k(\zeta_p)} \) fixed by the subgroup \(e_0 X_{k(\zeta_p)} \) of \(X_{k(\zeta_p)} \). Since \(\text{Gal}(k(\zeta_p)/k) \) acts trivially on \(e_0 X_{k(\zeta_p)} \), \(Y_0 \) is the maximal abelian extension of the basic \(\mathbb{Z}_p \)-extension \(k_\infty \) of \(k \) contained in \(L_{\infty, k(\zeta_p)} \). Hence the compositum \(K_\infty L_{\infty, k(\zeta_p)} \) is contained in \(Y_0 \). Suppose it is properly contained in \(Y_0 \). Then we can construct an unramified abelian \(p \)-extension \(L' \) over \(k_\infty \) properly containing \(L_{\infty, k} \) since \(p \nmid |\text{Gal}(k(\zeta_p)/k)| \), which contradicts the maximality of the extension \(L_{\infty, k} \). This completes the proof.
REFERENCES

MR 90a:11135

MR 87k:11127

MR 50:9839

MR 50:9839

MR 34:5829

Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Current address: KIAS, 207-43 Cheongrayang-Dong, Dongdaemun-Gu, Seoul 130-012, Korea
E-mail address: ohj@kias.kaist.ac.kr