Periodic billiard orbits are dense

in rational polygons

Authors:
M. Boshernitzan, G. Galperin, T. Krüger and S. Troubetzkoy

Journal:
Trans. Amer. Math. Soc. **350** (1998), 3523-3535

MSC (1991):
Primary 58F05

DOI:
https://doi.org/10.1090/S0002-9947-98-02089-3

MathSciNet review:
1458298

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that periodic orbits are dense in the phase space for billiards in polygons for which the angle between each pair of sides is a rational multiple of

**[BKM]**C. Boldrighini, M. Keane, and F. Marchetti,*Billiards in polygons*, Ann. Prob.**6**(1978), 532-540. MR**58:31007b****[Bo]**M. Boshernitzan,*Billiards and rational periodic directions in polygons*, Amer. Math. Monthly**99**(1992), 522-529. MR**93d:51043****[Bo1]**M. Boshernitza,*A condition for minimal interval exchange maps to be uniquely ergodic*, Duke Math. J.**52**(1985) 723-752.MR**87i:28012****[CFS]**I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai,*Ergodic theory,*Springer Verlag, Berlin, 1982. MR**87f:28019****[GKT]**G. Galperin, T. Krüger, and S. Troubetzkoy,*Local instability of orbits in polygonal and polyhedral billiards*, Comm. Math. Phys.**169**(1995), 463-473. MR**96d:58106****[GSV]**G.A. Galperin, A.M. Stepin, and Ya.B. Vorobetz,*Periodic billiard trajectories in polygons: generating mechanisms*, Russian Math. Surv.**47:3**(1992), 5-80. MR**93h:58088****[Gu]**E. Gutkin,*Billiards in polygons*, Physica D**19**(1986), 311-333. MR**87k:58085****[Gu1]**E. Gutkin,*Billiards on almost integrable polyhedral surfaces*, Ergod. Th. Dyn. Sys.**4**(1984), 569-584. MR**86m:58123****[K]**M. Keane,*Interval exchange transformations*, Math. Z.**141**(1975), 25-31. MR**50:10207****[KMS]**S. Kerckhoff, H. Masur, and J. Smillie,*Ergodicity of billiard flows and quadratic differentials*, Annals Math.**124**(1986), 293-311. MR**88f:58122****[M]**H. Masur,*Closed trajectories for quadratic differentials with an application to billiards*, Duke Math. J.**53**(1986), 307-313. MR**87j:30107****[M1]**H. Masur,*The growth rate of trajectories of a quadratic differential*, Ergod. Th. Dyn. Sys.**10**(1990), 151-176. MR**91d:30042****[V]**W. Veech,*The billiard in a regular polygon*Geom. Func. Anal.**2**(1992), 341-379. MR**94a:11074****[V1]**W. Veech,*Teichmuller curves in moduli space, Eisenstein series and an application to triangular billiards*, Invent. Math.**97**(1989), 553-583. MR**91h:58083a****[W]**P. Walters,*An introduction to ergodic theory*, Springer-Verlag, 1982. MR**84e:28017**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
58F05

Retrieve articles in all journals with MSC (1991): 58F05

Additional Information

**M. Boshernitzan**

Affiliation:
Department of Mathematics, Rice University, Houston, Texas 77005

Email:
michael@math.rice.edu

**G. Galperin**

Affiliation:
Forschungszentrum BiBos, Universität Bielefeld, Bielefeld, Germany

Address at time of publication:
Department of Mathematics, Eastern Illinois University

Email:
cfgg@eiu.edu

**T. Krüger**

Affiliation:
Forschungszentrum BiBos, Universität Bielefeld, Bielefeld, Germany

**S. Troubetzkoy**

Affiliation:
Forschungszentrum BiBos, Universität Bielefeld, Bielefeld, Germany and Institute for Mathematical Science, SUNY at Stony Brook, Stony Brook, New York 11794

Address at time of publication:
Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294

Email:
troubetz@math.uab.edu

DOI:
https://doi.org/10.1090/S0002-9947-98-02089-3

Received by editor(s):
July 29, 1996

Additional Notes:
MB is partially supported by NSF-DMS-9224667.

GG thanks the Alexander von Humboldt Stiftung for their support.

ST thanks the Deutsche Forschungsgemeinschaft for their support.

Article copyright:
© Copyright 1998
American Mathematical Society