Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Subvarieties of $\mathcal{SU}_C(2)$ and $2\theta$-divisors
in the Jacobian


Authors: W. M. Oxbury, C. Pauly and E. Previato
Journal: Trans. Amer. Math. Soc. 350 (1998), 3587-3614
MSC (1991): Primary 14D20, 14H42, 14H60, 14K25
DOI: https://doi.org/10.1090/S0002-9947-98-02148-5
MathSciNet review: 1467474
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We explore some of the interplay between Brill-Noether subvarieties of the moduli space ${\mathcal{SU}}_C(2,K)$ of rank 2 bundles with canonical determinant on a smooth projective curve and $2\theta$-divisors, via the inclusion of the moduli space into $|2\Theta|$, singular along the Kummer variety. In particular we show that the moduli space contains all the trisecants of the Kummer and deduce that there are quadrisecant lines only if the curve is hyperelliptic; we show that for generic curves of genus $<6$, though no higher, bundles with $>2$ sections are cut out by $\Gamma _{00}$; and that for genus 4 this locus is precisely the Donagi-Izadi nodal cubic threefold associated to the curve.


References [Enhancements On Off] (What's this?)

  • 1. E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves, Springer 1985; MR 86h:14019
  • 2. A. Beauville, Fibré de rang deux sur une courbe, fibré déterminant et fonctions theta II, Bull. Soc. Math. France, 119 (1991) 259-291; MR 92m:14041
  • 3. A. Beauville, O. Debarre, Sur les fonctions theta du second ordre, Arithmetic of Complex Manifolds, Lect. Notes Math. 1399 (1989) 27-39; MR 91g:14021
  • 4. A. Beauville, M.S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989) 169-179; MR 91c:14040
  • 5. A. Bertram, Moduli of rank 2 vector bundles, theta divisors and the geometry of curves in projective space, J. Diff. Geom. 35 (1992) 429-469; MR 93g:14037
  • 6. A. Bertram, B. Feinberg, On stable rank two bundles with canonical determinant and many sections, Algebraic Geometry: the Europroj Conferences in Catania and Barcelona, Marcel Dekker (1997);
  • 7. A. Coble, Algebraic Geometry and Theta Functions, AMS Colloquium Publications, vol. X, 1929; MR 84m:14001 (reprint)
  • 8. O. Debarre, Sur la démonstration de A. Weil du théorème de Torelli pour les courbes, Compositio Math. 58 (1986) 3-11; MR 87j:14045
  • 9. R. Donagi, The fibres of the Prym map, in Curves, Jacobians and Abelian Varieties, Contemporary Mathematics vol 136 (1992), 55-125; MR 94e:14037
  • 10. B. van Geemen, G. van der Geer, Kummer varieties and the moduli spaces of abelian varieties, Amer. J. Math. 108 (1986) 615-642; MR 87k:14050
  • 11. M. Green, Quadrics of rank four in the ideal of the canonical curve, Invent. Math. 75 (1984) 85-104; MR 85f:14028
  • 12. M. Green, R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986) 73-90; MR 87g:14022
  • 13. E. Izadi, The geometric structure of $\mathcal A_4$, the structure of the Prym map, double solids and $\Gamma _{00}$-divisors, J. Reine Angew. Math. 462 (1995) 93-158; MR 96d:14042
  • 14. H. Lange, M.S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983) 55-72; MR 85f:14013
  • 15. H. Lange, Higher secant varieties of curves and the theorem of Nagata on ruled surfaces, Manuscripta Math. 47 (1984) 263-269; MR 85f:14043
  • 16. H. Lange, Höhere Sekantenvarietäten und Vektorbündel auf Kurven, Manuscripta Math. 52 (1985) 63-80; MR 86h:14010
  • 17. Y. Laszlo, Un théorème de Riemann pour les diviseurs theta sur les espaces de modules de fibrés stables, Duke Math. J. 64 (1991) 333-347; MR 92m:14019
  • 18. S. Mukai, Curves and Grassmannians, in Algebraic Geometry and Related Topics, eds. J-H. Yang, Y. Namikawa, K. Ueno, 1992; MR 95i:14032
  • 19. D. Mumford, Curves and their Jacobians, Ann Arbor, 1975; MR 54:7451
  • 20. M.S. Narasimhan, S. Ramanan, $2\theta$-linear systems on abelian varieties, in Vector Bundles on Algebraic Varieties, Tata Institute, Bombay 1984, 415-427; MR 88j:14014
  • 21. K. Paranjape, S. Ramanan, On the canonical ring of a curve, in Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuniya, Tokyo 1988, 503-516; MR 90b:14024
  • 22. G.E. Welters, The surface $C-C$ on Jacobi varieties and second order theta functions, Acta Math. 157 (1986) 1-22; MR 87j:14048

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14D20, 14H42, 14H60, 14K25

Retrieve articles in all journals with MSC (1991): 14D20, 14H42, 14H60, 14K25


Additional Information

W. M. Oxbury
Affiliation: Department of Mathematical Sciences, Science Laboratories, South Road, Durham DH1 3LE, U.K.
Email: w.m.oxbury@durham.ac.uk

C. Pauly
Affiliation: Laboratoire J. A. Dieudonné, Université de Nice-Sophia-Antipolis, Parc Valrose, F-06108 Nice Cedex 02, France
Email: pauly@math.unice.fr

E. Previato
Affiliation: Department of Mathematics, Boston University, Boston, Massachusetts 02215
Email: ep@math.bu.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02148-5
Received by editor(s): September 26, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society