Homoclinic Solutions and Chaos

in Ordinary Differential Equations

with Singular Perturbations

Author:
Joseph Gruendler

Journal:
Trans. Amer. Math. Soc. **350** (1998), 3797-3814

MSC (1991):
Primary 34E15, 34C37, 58F13

MathSciNet review:
1475684

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Ordinary differential equations are considered which contain a singular perturbation. It is assumed that when the perturbation parameter is zero, the equation has a hyperbolic equilibrium and homoclinic solution. No restriction is placed on the dimension of the phase space or on the dimension of intersection of the stable and unstable manifolds. A bifurcation function is established which determines nonzero values of the perturbation parameter for which the homoclinic solution persists. It is further shown that when the vector field is periodic and a transversality condition is satisfied, the homoclinic solution to the perturbed equation produces a transverse homoclinic orbit in the period map. The techniques used are those of exponential dichotomies, Lyapunov-Schmidt reduction and scales of Banach spaces. A much simplified version of this latter theory is developed suitable for the present case. This work generalizes some recent results of Battelli and Palmer.

**1.**Flaviano Battelli and Kenneth J. Palmer,*Chaos in the Duffing equation*, J. Differential Equations**101**(1993), no. 2, 276–301. MR**1204329**, 10.1006/jdeq.1993.1013**2.**Earl A. Coddington and Norman Levinson,*Theory of ordinary differential equations*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR**0069338****3.**W. A. Coppel,*Dichotomies in stability theory*, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR**0481196****4.**J. Dieudonné,*Foundations of modern analysis*, Academic Press, New York-London, 1969. Enlarged and corrected printing; Pure and Applied Mathematics, Vol. 10-I. MR**0349288****5.**Joseph Gruendler,*Homoclinic solutions for autonomous dynamical systems in arbitrary dimension*, SIAM J. Math. Anal.**23**(1992), no. 3, 702–721. MR**1158829**, 10.1137/0523036**6.**Joseph Gruendler,*Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations*, J. Differential Equations**122**(1995), no. 1, 1–26. MR**1356127**, 10.1006/jdeq.1995.1136**7.**Joseph Gruendler,*The existence of transverse homoclinic solutions for higher order equations*, J. Differential Equations**130**(1996), no. 2, 307–320. MR**1410890**, 10.1006/jdeq.1996.0145**8.**Jack K. Hale,*Ordinary differential equations*, 2nd ed., Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. MR**587488****9.**J. Knobloch,*Bifurcation of Degenerate Homoclinics in Reversible and Conservative Systems*, Preprint No. M 15/94, Technical University of Ilmenau, PSF 327, D 98684 Ilmenau, Germany, 1994.**10.**Kenneth J. Palmer,*Exponential dichotomies and transversal homoclinic points*, J. Differential Equations**55**(1984), no. 2, 225–256. MR**764125**, 10.1016/0022-0396(84)90082-2**11.**U. Schalk and J. Knobloch,*Homoclinic points near degenerate homoclinics*, Nonlinearity**8**(1995), no. 6, 1133–1141. MR**1363403****12.**Patricio L. Felmer,*Periodic solutions of spatially periodic Hamiltonian systems*, J. Differential Equations**98**(1992), no. 1, 143–168. MR**1168976**, 10.1016/0022-0396(92)90109-Z**13.**A. Vanderbauwhede and S. A. van Gils,*Center manifolds and contractions on a scale of Banach spaces*, J. Funct. Anal.**72**(1987), no. 2, 209–224. MR**886811**, 10.1016/0022-1236(87)90086-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
34E15,
34C37,
58F13

Retrieve articles in all journals with MSC (1991): 34E15, 34C37, 58F13

Additional Information

**Joseph Gruendler**

Affiliation:
Department of Mathematics, North Carolina A&T State University, Greensboro, North Carolina 27411

Email:
gruendlj@ncat.edu

DOI:
https://doi.org/10.1090/S0002-9947-98-02211-9

Keywords:
Ordinary differential equations,
homoclinic solutions,
bifurcations,
singular perturbations

Received by editor(s):
December 28, 1995

Received by editor(s) in revised form:
October 23, 1996

Additional Notes:
This work supported in part by the J. William Fulbright Commission.

Article copyright:
© Copyright 1998
American Mathematical Society