Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Poincaré embedding of the diagonal


Author: Yanghyun Byun
Journal: Trans. Amer. Math. Soc. 350 (1998), 3537-3553
MSC (1991): Primary 57P10
DOI: https://doi.org/10.1090/S0002-9947-98-02274-0
MathSciNet review: 1491856
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There is a Poincaré embedding structure on the diagonal $X\rightarrow X\times X$ under the conditions: i) $X$ is formed by gluing two compact smooth manifolds along their boundaries using a homotopy equivalence and ii) a square-root closed condition is satisfied by the fundamental groupoid of the boundary.


References [Enhancements On Off] (What's this?)

  • 1. R. Benlian et J. Wagoner, Type d'homotopie fibré et réduction structurale des fibrés vetoriels, C.R. Acad. Sci. Paris Sér. A-B 265 (1967), A 205 - A 209 MR 36:4576
  • 2. S.E. Cappell, A splitting theorem for manifolds, Inventiones Math. 33 (1976), 69-17 MR 55:11274
  • 3. A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47-82 MR 26:3069
  • 4. J.C. Hausmann and P. Vogel, Geometry on Poincaré spaces, Mathematical notes, Princeton University Press (1993) MR 95a:57042
  • 5. J.P.E. Hodgson, The Whitney technique for Poincaré complex embeddings, Proc. AMS 35 (1972), 263-268 MR 46:2680
  • 6. L. Jones, Patch spaces: a geometric representation for Poincaré spaces, Annals of Math. 97 (1973), 306-343; 102 (1975), 183-185. MR 47:4269, MR 52:11930
  • 7. J.R. Klein, W. Richter and Shmuel Weinberger, A below middle dimension simply connected Poincaré Whitney embedding theorem, (to appear)
  • 8. N. Levitt, Applications of Poincaré duality spaces to the topology of manifolds, Topology 11 (1972), 205-221 MR 45:4419
  • 9. R.A. Piccinini, Lectures on homotopy theory, Mathematics Studies 171, North-Holland (1992) MR 93e:55001
  • 10. V. Puppe, A remark on ``homotopy fibrations'', Manuscripta Math. 12 (1974), 113-120 MR 51:1808
  • 11. E.H. Spanier, Algebraic topology, McGraw-Hill, New York (1966) MR 35:1007
  • 12. C.T.C. Wall, Poincaré complexes I, Annals of Math. 86 (1967), 213-245 MR 36:880
  • 13. -, Surgery on compact manifolds, Academic Press London & New York (1970) MR 55:4217
  • 14. G.W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, Springer-Verlag, New York (1978) MR 80b:55001
  • 15. H. Whitney, The singularities of a smooth $n$-manifold in $(2n-1)$-space, Annals of Math. 45 (1944) 247-293 MR 5:274a

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 57P10

Retrieve articles in all journals with MSC (1991): 57P10


Additional Information

Yanghyun Byun
Affiliation: Department of Mathematics, Hanyang University, Seongdong-Gu, Seoul, Korea
Email: yhbyun@fermat.hanyang.ac.kr

DOI: https://doi.org/10.1090/S0002-9947-98-02274-0
Received by editor(s): July 29, 1996
Additional Notes: Partially supported by 1996 Faculty Research Fund of Hanyang University, Korea.
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society