Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the rigidity theorem for elliptic genera

Authors: Anand Dessai and Rainer Jung
Journal: Trans. Amer. Math. Soc. 350 (1998), 4195-4220
MSC (1991): Primary 58G10, 19L47, 11F03; Secondary 57S15, 13N10
MathSciNet review: 1608301
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a detailed proof of the rigidity theorem for elliptic genera. Using the Lefschetz fixed point formula we carefully analyze the relation between the characteristic power series defining the elliptic genera and the equivariant elliptic genera. We show that equivariant elliptic genera converge to Jacobi functions which are holomorphic. This implies the rigidity of elliptic genera. Our approach can be easily modified to give a proof of the rigidity theorem for the elliptic genera of level $N$.

References [Enhancements On Off] (What's this?)

  • [Ah66] L.V. Ahlfors: Complex Analysis (2nd Edition), International Series in Pure and Applied Mathematics, McGraw-Hill (1966).MR 32:5844
  • [AtSiIII68] M.F. Atiyah and I.M. Singer, The index of elliptic operators: III, Ann. of Math. 87 (1968), 546-604. MR 38:5245
  • [Ca63] H. Cartan: Elementary theory of analytic functions of one or several complex variables, Addison-Wesley (1963). MR 27:4911
  • [BoTa89] R. Bott and C.H. Taubes: On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1989), 137-186. MR 89k:58270
  • [De96] A. Dessai: Rigidity Theorems for $Spin^c$-Manifolds and Applications, doctoral thesis, Universität Mainz (1996).
  • [EiZa85] M. Eichler and D. Zagier: The Theory of Jacobi Forms, Progress in Mathematics, Vol 55, Birkhäuser (1985). MR 86j:11043
  • [Hi88] F. Hirzebruch: Elliptic genera of level $N$ for complex manifolds, in: K. Bleuler and M. Werner (Eds.): Differential Geometrical Methods in Theoretical Physics (Como 1987), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 250, Kluwer (1988). MR 90m:57030
  • [HiBeJu92] F. Hirzebruch, Th. Berger and R. Jung:Manifolds and Modular Forms, Aspects of Mathematics, Vol. E20, Vieweg (1992). MR 94d:57001
  • [La86] P.S. Landweber: Elliptic Genera: an Introductory Overview, in [La88], 1-10. CMP 21:04
  • [La88] P.S.Landweber (Ed.): Elliptic Curves and Modular Forms in Algebraic Topology, Proceedings Princeton 1986, Lecture Notes in Mathematics, 1326, Springer (1988). MR 91a:57021
  • [LaSt88] P.S. Landweber and R.E. Stong: Circle Actions on Spin Manifolds and Characteristic Numbers, Topology 27 (1988), 145-161. MR 90a:57040
  • [Li92] K. Liu, On Elliptic Genera, Theta-Functions and Elliptic Modular Surfaces, preprint (1992).
  • [Li95] -, On modular invariance and rigidity theorems, J. Differential Geom. 41 (1995), 343-396. MR 96f:58152
  • [Oc86] S. Ochanine: Genres Elliptiques Équivariants, in [La88], 107-122. CMP 21:04
  • [Oc87] -,Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), 143-151. MR 88e:57031
  • [Re90] R. Remmert: Theory of Complex Functions, Graduate Texts in Mathematics, 122, Springer (1990). MR 91m:30001
  • [Ta89] C.H. Taubes: $S^1$ Actions and Elliptic Genera, Comm. Math. Phys. 122 (1989), 455-526. MR 90f:58167
  • [Wi86] E. Witten The Index of the Dirac Operator in Loop Space, in [La88], 161-181. CMP 21:04

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58G10, 19L47, 11F03, 57S15, 13N10

Retrieve articles in all journals with MSC (1991): 58G10, 19L47, 11F03, 57S15, 13N10

Additional Information

Anand Dessai
Affiliation: Department of Mathematics University of Mainz 55099 Mainz Germany
Address at time of publication: Department of Mathematics University of Augsburg 86135 Augsburg Germany
Email: dessai@mathpool.Uni-Augsburg.DE

Rainer Jung
Affiliation: Mathematisches Forschungsinstitut Oberwolfach Lorenzenhof 77709 Oberwolfach Germany
Email: jung@MFO.DE

Keywords: Rigidity theorem, elliptic genera, index theory, Jacobi functions
Received by editor(s): January 7, 1997
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society