Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On free actions, minimal flows,
and a problem by Ellis

Author: Vladimir G. Pestov
Journal: Trans. Amer. Math. Soc. 350 (1998), 4149-4165
MSC (1991): Primary 54H20
MathSciNet review: 1608494
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We exhibit natural classes of Polish topological groups $G$ such that every continuous action of $G$ on a compact space has a fixed point, and observe that every group with this property provides a solution (in the negative) to a 1969 problem by Robert Ellis, as the Ellis semigroup $E(U)$ of the universal minimal $G$-flow $U$, being trivial, is not isomorphic with the greatest $G$-ambit. Further refining our construction, we obtain a Polish topological group $G$ acting freely on the universal minimal flow $U$ yet such that ${\mathcal S}(G)$ and $E(U)$ are not isomorphic. We also display Polish topological groups acting effectively but not freely on their universal minimal flows. In fact, we can produce examples of groups of all three types having any prescribed infinite weight. Our examples lead to dynamical conclusions for some groups of importance in analysis. For instance, both the full group of permutations $S(X)$ of an infinite set, equipped with the pointwise topology, and the unitary group $U(\mathcal{H})$ of an infinite-dimensional Hilbert space with the strong operator topology admit no free action on a compact space, and the circle $\mathbb{S}^{1}$ forms the universal minimal flow for the topological group ${\operatorname {Homeo}\,}_{+}(\mathbb{S}^{1})$ of orientation-preserving homeomorphisms. It also follows that a closed subgroup of an amenable topological group need not be amenable.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 54H20

Retrieve articles in all journals with MSC (1991): 54H20

Additional Information

Vladimir G. Pestov
Affiliation: School of Mathematical and Computing Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

Keywords: Free actions on compacta, greatest ambit, universal minimal flow, Ellis semigroup, fixed point, effective actions, extremely amenable groups
Received by editor(s): August 19, 1996
Additional Notes: Research partially supported by the New Zealand Ministry of Research, Science and Technology through the project “Dynamics in Function Spaces” of the International Science Linkages Fund.
Dedicated: Dedicated to my teacher, Professor Alexander V. Arhangel’skiĭ, on his 60th birthday
Article copyright: © Copyright 1998 American Mathematical Society