Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Santaló-regions of a convex body


Authors: Mathieu Meyer and Elisabeth Werner
Journal: Trans. Amer. Math. Soc. 350 (1998), 4569-4591
MSC (1991): Primary 52A20; Secondary 52A38
DOI: https://doi.org/10.1090/S0002-9947-98-02162-X
MathSciNet review: 1466952
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by the Blaschke-Santaló inequality, we define for a convex body $K$ in $\mathbf{R}^n$ and for $t \in \mathbf{R}$ the Santaló-regions $S(K,t)$ of $K$. We investigate the properties of these sets and relate them to a concept of affine differential geometry, the affine surface area of $K$.


References [Enhancements On Off] (What's this?)

  • [B] K. Ball: Logarithmically concave functions and sections of convex sets in $\mathbf{R}^n$, Studia Math. vol. 88 (1988),69-84. MR 89e:52002
  • [D-H] G. Dolzmann, D. Hug: Equality of two representations of extended affine surface area, Archiv der Mathematik 65 no.4 (1995),352-356. MR 97c:52019
  • [F] M. Fradelizi: Hyperplane sections of convex bodies in isotropic position, to appear in Contributions to Algebra and Geometry.
  • [G] P. Gruber: Aspects of approximation of convex bodies, Handbook of Convex Geometry, vol.A(1993), 321-345, North Holland. MR 95b:52003
  • [He] D. Hensley: Slicing convex bodies-bounds for slice area in terms of the body's covariance, Proc. Amer. Math. Soc. 79(4) (1980), 619-625. MR 81j:52008
  • [L1] K. Leichtweiss: Zur Affinoberfläche konvexer Körper, Manuscripta Mathematica 56 (1986), 429-464. MR 87k:52011
  • [L2] K. Leichtweiss: Über eine Formel Blaschkes zur Affinoberfläche, Studia Scient. Math. Hung. 21 (1986), 453-474. MR 89b:53016
  • [Lu] E. Lutwak: Extended affine surface area, Adv. in Math. 85 (1991), 39-68. MR 92d:52012
  • [Lu-O] E. Lutwak, V.Oliker: On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geometry, vol. 41 (1995), 227-246. MR 95m:52007
  • [Me-P] M. Meyer, A. Pajor: On the Blaschke Santaló inequality, Arch. Math. 55(1990), 82-93. MR 92b:52013
  • [Mi-P] V. D. Milman, A. Pajor: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, GAFA (eds. J. Lindenstrauss, V.D. Milman), Lecture Notes in Math.1376, Springer, Berlin (1989), 64-104. MR 90g:52003
  • [Sch] R. Schneider: Convex bodies: The Brunn-Minkowski theory, Encyclopedia of Math. and its Applic.44, Cambridge University Press (1993). MR 94d:52007
  • [S1] C. Schütt: On the affine surface area, Proc. Amer. Math. Soc. 118 (1993), 1213-1218. MR 93j:52009
  • [S2] C. Schütt: Floating body, illumination body and polytopal approximation, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 201-203. MR 98b:52005
  • [S-W] C. Schütt, E. Werner: The convex floating body, Math. Scand. 66 (1990), 275-290. MR 91i:52005
  • [W] E. Werner: Illumination bodies and affine surface area, Studia Math. 110 (1994), 257-269. MR 95g:52010

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 52A20, 52A38

Retrieve articles in all journals with MSC (1991): 52A20, 52A38


Additional Information

Mathieu Meyer
Affiliation: Université de Marne-La-Valee, Equipe d’Analyse et de Mathématiques Appliquees, Cité Descartes-5, bd Descartes-Champs-sur-Marne, 77454 Marne-la-Vallée cedex 2, France
Email: meyer@math.univ-mlv.fr

Elisabeth Werner
Affiliation: Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106
Address at time of publication: Université de Lille 1, UFR de Mathématiques, 59655 Villeneuve d’Ascq, France
Email: emw2@po.cwru.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02162-X
Keywords: Blaschke-Santaló inequality, affine surface area
Received by editor(s): October 25, 1996
Additional Notes: Supported by a grant from the National Science Foundation
The paper was written while both authors were at MSRI
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society