Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The lifting of an exponential sum
to a cyclic algebraic number field
of prime degree


Author: Yangbo Ye
Journal: Trans. Amer. Math. Soc. 350 (1998), 5003-5015
MSC (1991): Primary 11L05; Secondary 11F70
MathSciNet review: 1433129
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be a cyclic algebraic number field of prime degree. We prove an identity which lifts an exponential sum similar to the Kloosterman sum to an exponential sum taken over certain algebraic integers in $E$.


References [Enhancements On Off] (What's this?)

  • 1. Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
  • 2. H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
  • 3. W. Duke and H. Iwaniec, A relation between cubic exponential and Kloosterman sums, A tribute to Emil Grosswald: number theory and related analysis, Contemp. Math., vol. 143, Amer. Math. Soc., Providence, RI, 1993, pp. 255–258. MR 1210520, 10.1090/conm/143/00999
  • 4. John Greene and Dennis Stanton, The triplication formula for Gauss sums, Aequationes Math. 30 (1986), no. 2-3, 134–141. MR 843655, 10.1007/BF02189920
  • 5. P. Gérardin and J.-P. Labesse, The solution of a base change problem for 𝐺𝐿(2) (following Langlands, Saito, Shintani), Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 115–133. MR 546613
  • 6. Hervé Jacquet, The continuous spectrum of the relative trace formula for 𝐺𝐿(3) over a quadratic extension, Israel J. Math. 89 (1995), no. 1-3, 1–59. MR 1324453, 10.1007/BF02808192
  • 7. H. Jacquet and R. P. Langlands, Automorphic forms on 𝐺𝐿(2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
  • 8. Hervé Jacquet and Yangbo Ye, Une remarque sur le changement de base quadratique, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 11, 671–676 (French, with English summary). MR 1081622
  • 9. Nicholas M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR 955052
  • 10. Daniel S. Kubert and Stephen Lichtenbaum, Jacobi-sum Hecke characters and Gauss-sum identities, Compositio Math. 48 (1983), no. 1, 55–87. MR 700580
  • 11. Z. Mao and S. Rallis, A trace formula for dual pairs, Duke Math. J. 87 (1997), 321-341. CMP 97:11
  • 12. J. Tate, Number theoretic background, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR 546607
  • 13. Yangbo Ye, Kloosterman integrals and base change for 𝐺𝐿(2), J. Reine Angew. Math. 400 (1989), 57–121. MR 1013725, 10.1515/crll.1989.400.57
  • 14. Yangbo Ye, The lifting of Kloosterman sums, J. Number Theory 51 (1995), no. 2, 275–287. MR 1326749, 10.1006/jnth.1995.1047
  • 15. Don Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), no. 1, 1–46. MR 0382174

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11L05, 11F70

Retrieve articles in all journals with MSC (1991): 11L05, 11F70


Additional Information

Yangbo Ye
Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419
Email: yey@math.uiowa.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-98-02001-7
Received by editor(s): May 13, 1996
Received by editor(s) in revised form: December 9, 1996
Article copyright: © Copyright 1998 American Mathematical Society