Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A generalized Dedekind-Mertens lemma and
its converse


Authors: Alberto Corso, William Heinzer and Craig Huneke
Journal: Trans. Amer. Math. Soc. 350 (1998), 5095-5109
MSC (1991): Primary 13A15; Secondary 13B25, 13G05, 13H10
DOI: https://doi.org/10.1090/S0002-9947-98-02176-X
MathSciNet review: 1473435
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study content ideals of polynomials and their behavior under multiplication. We give a generalization of the Lemma of Dedekind-Mertens and prove the converse under suitable dimensionality restrictions.


References [Enhancements On Off] (What's this?)

  • [AG] Arnold, J., Gilmer, R., On the contents of polynomials, Proc. Amer. Math. Soc. 24 (1970), 556-562. MR 40:5581
  • [AK] Anderson, D.D., Kang, B.G., Content formulas for polynomials and power series and complete integral closure, J. Algebra 181 (1996), 82-94. MR 97c:13014
  • [BG] Bruns, W., Guerrieri, A., The Dedekind-Mertens formula and determinantal rings, to appear, Proc. Amer. Math. Soc. CMP 97:17
  • [BH] W. Bruns, W., Herzog, J., Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993. MR 95h:13020
  • [CVV] Corso, A., Vasconcelos, W.V, Villarreal, R., Generic Gaussian ideals, J. Pure Appl. Algebra 125 (1998), 117-127. CMP 98:07
  • [E] Edwards, H., Divisor Theory, Birkhäuser, Boston, 1990. MR 93h:11115
  • [GGP] Gilmer, R., Grams, A., Parker, T., Zero divisors in power series rings, J. Reine Angew. Math. 278/279 (1975), 145-164. MR 52:8117
  • [GV] Glaz, S., Vasconcelos, W.V., The content of Gaussian polynomials, to appear, J. Algebra.
  • [HH1] Heinzer, W., Huneke, C., Gaussian polynomials and content ideals, Proc. Amer. Math. Soc. 125 (1997), 739-745. MR 97e:13015
  • [HH2] Heinzer, W., Huneke, C., The Dedekind-Mertens lemma and the contents of polynomials, Proc. Amer. Math. Soc. 126 (1998), 1305-1309. CMP 97:05
  • [Ho] Hochster, M., Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), 463-488. MR 57:3111
  • [Mat] Matsumura, H., Commutative Ring Theory, Cambridge University Press, Cambridge, 1986. MR 88h:13001
  • [N] Northcott, D.G., A generalization of a theorem on the content of polynomials, Proc. Camb. Philos. Soc. 55 (1959), 282-288. MR 22:1600
  • [Re1] Rees, D., A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), 24-28. MR 23:A3761
  • [Re2] Rees, D., A note on asymptotically unmixed ideals, Math. Proc. Camb. Phil. Soc. 98 (1985), 33-35. MR 86k:13015
  • [ZS] Zariski, O., Samuel, P., Commutative Algebra, vol. II, Springer, Berlin, 1975. MR 52:10706

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 13A15, 13B25, 13G05, 13H10

Retrieve articles in all journals with MSC (1991): 13A15, 13B25, 13G05, 13H10


Additional Information

Alberto Corso
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
Address at time of publication: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: corso@math.msu.edu

William Heinzer
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
Email: heinzer@math.purdue.edu

Craig Huneke
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47906
Email: huneke@math.purdue.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02176-X
Keywords: Content ideal of a polynomial, integral closure of an ideal, Dedekind--Mertens Lemma, Dedekind--Mertens number
Received by editor(s): February 10, 1997
Additional Notes: The authors gratefully acknowledge partial support from the NSF
Dedicated: To Wolmer V. Vasconcelos on the occasion of his sixtieth birthday
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society