Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Kähler Differentials, the $T$-functor,
and a Theorem of Steinberg


Authors: W. G. Dwyer and C. W. Wilkerson
Journal: Trans. Amer. Math. Soc. 350 (1998), 4919-4930
MSC (1991): Primary 55N99, 13D99
DOI: https://doi.org/10.1090/S0002-9947-98-02373-3
MathSciNet review: 1621741
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $T$ be the functor on the category of unstable algebras over the Steenrod algebra constructed by Lannes. We use an argument involving Kähler differentials to show that $T$ preserves polynomial algebras. This leads to new and relatively simple proofs of some topological and algebraic theorems.


References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, J. H. Gunawardena, and H. Miller, The Segal conjecture for elementary abelian $p$-groups, Topology 24 (1985), 435-460. MR 87m:55026
  • 2. D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge University Press, 1994.
  • 3. A. Borel, Groupes linéaires algébriques, Annals of Mathematics 64(2) (195), 20-82. MR 19:1195k
  • 4. A. Borel, Sous groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. 13(2) (1961), 216-240. MR 26:5094
  • 5. N. Bourbaki, Groupes et algèbres de Lie, Ch. $4$, $5$ et $6$., Masson, Paris, 1981. MR 39:1590
  • 6. H.E.A. Campbell, J.P. Hughes, and J. Shank, Preliminary notes on rigid reflection groups, preprint (1995).
  • 7. C. Chevalley, Invariants of finite groups generated by reflections., Amer. J. Math. 67 (1955), 778-782. MR 17:345d
  • 8. H. S. M. Coxeter, Discrete groups generated by reflections., Ann. Math. 35 (1934), 588-621.
  • 9. W.G. Dwyer and C.W. Wilkerson, Torsion in the cohomology of classifying spaces, hour address by Clarence Wilkerson, Holyoke College (1994).
  • 10. W.G. Dwyer and C.W. Wilkerson, Smith Theory and the functor T, Comm. Math. Helv. 66 (1991), 1-17. MR 92i:55006
  • 11. W. G. Dwyer and C. W. Wilkerson, Homotopy fixed point methods for Lie groups and finite loop spaces, Annals of Math. 139 (1994), 395-442. MR 95e:55019
  • 12. W. G. Dwyer and C. W. Wilkerson, The center of a $p$-compact group, Contemporary Mathematics 181, Proceedings of the 1993 Cech Conference (Northeastern Univ.), Amer. Math. Soc., Providence, 1995, pp. 119-157. MR 96a:55024
  • 13. D. Eisenbud, Commutative Algebra. With a View Toward Algebraic Geometry, Grad. Texts in Math 150, Springer, 1995. MR 97a:13001
  • 14. G. Kemper and G. Malle, The finite irreducible linear groups with polynomial rings of invariants, Universität Heidelberg preprint 96-38 (August 1996).
  • 15. J. Lannes, Cohomology of groups and function spaces, preprint (1986).
  • 16. J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un $p$-groupe abélien élémentaire, Publ. I.H.E.S. 75 (1992), 135-244. MR 93j:55019
  • 17. H. Matsumura, Commutative ring theory, Cambridge University Press, 1986. MR 88h:13001
  • 18. H. Nakajima, Regular rings of invariants of unipotent groups, J. of Algebra 85(2) (1983), 253-286. MR 85f:20038
  • 19. Lionel Schwartz, Unstable Modules over the Steenrod Algebra and Sullivan's Fixed Point Set Conjecture, University of Chicago Press, 1994. MR 95d:55017
  • 20. J.-P. Serre, Groupes finis d'automorphismes d'anneaux locaux réguliers, Colloq. d'Alg. E.N.S. (1967).
  • 21. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304. MR 15:6000b
  • 22. R. Steinberg, Differential equations invariant under finite reflection groups, A. M. S. Transactions 112 (1964), 392-400. MR 29:4807
  • 23. H. Toda, Cohomology mod 3 of the classifying space $BF_{4}$ of the exceptional group $F_{4}$, J. Math. Kyoto Univ. 13 (1973), 97-115. MR 47:9619

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 55N99, 13D99

Retrieve articles in all journals with MSC (1991): 55N99, 13D99


Additional Information

W. G. Dwyer
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email: dwyer.1@nd.edu

C. W. Wilkerson
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: wilker@math.purdue.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02373-3
Received by editor(s): August 1, 1996
Additional Notes: The authors were supported in part by the National Science Foundation
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society