Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Properties of some families of hypergeometric orthogonal polynomials in several variables

Author: J. F. van Diejen
Journal: Trans. Amer. Math. Soc. 351 (1999), 233-270
MSC (1991): Primary 33C50; Secondary 33D45
MathSciNet review: 1433128
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Limiting cases are studied of the Koornwinder-Macdonald multivariable generalization of the Askey-Wilson polynomials. We recover recently and not so recently introduced families of hypergeometric orthogonal polynomials in several variables consisting of multivariable Wilson, continuous Hahn and Jacobi type polynomials, respectively. For each class of polynomials we provide systems of difference (or differential) equations, recurrence relations, and expressions for the (squared) norms of the polynomials in question.

References [Enhancements On Off] (What's this?)

  • [AbSt] M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions, Dover Publications, New York, 1972 (9th printing). MR 85j:00005a; MR 94b:00012 (reprints)
  • [A] R. Askey, Continuous Hahn polynomials, J. Phys. A: Math. Gen. 18 (1985), L1017-1019. MR 87d:33021
  • [AW1] R. Askey and J. Wilson, A set of hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 13 (1982), 651-655. MR 83h:33010
  • [AW2] -, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319. MR 87a:05023
  • [AtSu] N. M. Atakishiyev and S. K. Suslov, The Hahn and Meixner polynomials of an imaginary argument and some of their applications, J. Phys. A: Math. Gen. 18 (1985), 1583-1596. MR 87i:33021
  • [BO] R. J. Beerends and E. M. Opdam, Certain hypergeometric series related to the root system $BC$, Trans. Amer. Math. Soc. 339 (1993), 581-609. MR 94e:33024
  • [C1] I. Cherednik, A unification of Knizhnik-Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-431. MR 93b:17040
  • [C2] -, Integration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations, Adv. Math. 106 (1994), 65-95. MR 95m:32021
  • [C3] -, Double affine Hecke algebras and Macdonald's conjectures, Ann. Math. 141 (1995), 191-216. MR 96m:33010
  • [C4] -, Macdonald's evaluation conjectures and difference Fourier transform, Invent. Math. 122 (1995), 119-145; 125 (1996), 391. CMP 96:02,14
  • [C5] -, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 3 (1995), 483-515. MR 97f:33032
  • [De] A. Debiard, Système différentiel hypergéométrique et parties radiales des opérateurs invariants des espaces symétriques de type $BC_p$, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin (M.-P. Malliavin, ed.), Lecture Notes in Math., vol. 1296, Springer, Berlin, 1988, pp. 42-124. MR 89e:22027
  • [D1] J. F. van Diejen, Commuting difference operators with polynomial eigenfunctions, Compositio Math. 95 (1995), 183-233. MR 96i:39023
  • [D2] -, Difference Calogero-Moser systems and finite Toda chains, J. Math. Phys. 36 (1995), 1299-1323. MR 96d:70014
  • [D3] -, Multivariable continuous Hahn and Wilson polynomials related to integrable difference systems, J. Phys. A: Math. Gen. 28 (1995), L369-L374. MR 96i:33026
  • [D4] -, On the diagonalization of difference Calogero-Sutherland systems, in: Symmetries and integrability of difference equations (D. Levi, L. Vinet, and P. Winternitz, eds.), CRM Proceedings and Lecture Notes, vol. 9, Amer. Math. Soc., Providence, R.I., 1996, pp. 79-89. CMP 97:03
  • [D5] -, Self-dual Koornwinder-Macdonald polynomials, Invent. Math. 126 (1996), 319-339. CMP 97:02
  • [Du1] C. F. Dunkl, Reflection groups and orthogonal polynomials on the sphere, Math. Z. 197 (1988), 33-60. MR 89b:42016
  • [Du2] -, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), 167-183. MR 90k:33027
  • [GR] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge University Press, Cambridge, 1990. MR 91d:33034
  • [Gu1] R. A. Gustafson, A generalization of Selberg's beta integral, Bull. Amer. Math. Soc. (N.S.) 22 (1990), 97-105. MR 90j:33001
  • [Gu2] -, Some $q$-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras, Trans. Amer. Math. Soc. 341 (1994), 69-119. MR 94c:33032
  • [H] G. J. Heckman, An elementary approach to the hypergeometric shift operator of Opdam, Invent. Math. 103 (1991), 341-350. MR 92i:33012
  • [HS] G. J. Heckman and H. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Perspectives in Math., vol. 16, Academic Press, San Diego, 1994. MR 96j:22019
  • [Ka] K. W. J. Kadell, A proof of the $q$-Macdonald-Morris conjecture for $BC_n$, Mem. Amer. Math. Soc. 108 (1994), no. 516. MR 94h:33013
  • [KS] R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Math. report Delft Univ. of Technology 94-05, 1994.
  • [K1] T. H. Koornwinder, Self-duality for $q$-ultraspherical polynomials associated with the root system $A_n$, unpublished manuscript, 1988.
  • [K2] -, Askey-Wilson polynomials for root systems of type BC, in: Hypergeometric functions on domains of positivity, Jack polynomials, and applications (D. St. P. Richards, ed.), Contemp. Math., vol. 138, Amer. Math. Soc., Providence, R. I., 1992, pp. 189-204. MR 94e:33039
  • [M1] I. G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13 (1982), 988-1007. MR 84h:17006a
  • [M2] -, Orthogonal polynomials associated with root systems, unpublished manuscript, 1988. See MR 91k:00039
  • [M3] -, Some conjectures for Koornwinder's orthogonal polynomials, unpublished manuscript, 1991.
  • [M4] -, Symmetric functions and Hall polynomials, 2nd edition, Clarendon Press, Oxford, 1995. MR 96h:05027
  • [M5] -, Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki 1994/95, Astérisque No. 237 (1996), pp. 189-207. CMP 97:05
  • [OOS] H. Ochiai, T. Oshima, and H. Sekiguchi, Commuting families of symmetric differential operators, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 62-66. CMP 94:11
  • [OP] M. A. Olshanetsky and A. M. Perelomov, Quantum integrable systems related to Lie algebras, Phys. Reps. 94 (1983), 313-404. MR 84k:81007
  • [Op1] E. M. Opdam, Some applications of hypergeometric shift operators, Invent. Math. 98 (1989), 1-18. MR 91h:33024
  • [Op2] -, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1993), 75-121. CMP 96:01
  • [OS] T. Oshima and H. Sekiguchi, Commuting families of differential operators invariant under the action of a Weyl group, J. Math. Sci. Univ. Tokyo 2 (1995), 1-75. MR 96k:35006
  • [R1] S. N. M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys. 110 (1987), 191-213. MR 88i:58072
  • [R2] -, Finite-dimensional soliton systems. in.: Integrable and superintegrable systems (B. Kupershmidt, ed.), World Scientific, Singapore, 1990, pp. 165-206. MR 92g:58056
  • [Se] A. Selberg, Bemerkninger om et multipelt integral, Norsk Mat. Tidsskr. 26 (1944), 71-78 (Collected papers, vol. 1, Springer, Berlin, 1989, pp. 204-213). MR 8:269b; MR 92h:01083
  • [S1] J. V. Stokman, Multivariable big and little $q$-Jacobi polynomials, SIAM J. Math. Anal. 28 (1997), 452-480. CMP 97:08
  • [S2] -, Multivariable $BC$ type Askey-Wilson polynomials with partly discrete orthogonality measure, Ramanujan J. 1 (1997), 275-297. CMP 98:08
  • [SK] J. V. Stokman and T. H. Koornwinder, Limit transitions for $BC$ type multivariable orthogonal polynomials, Canad. J. Math. 49 (1997), 373-404. CMP 97:12
  • [V] L. Vretare, Formulas for elementary spherical functions and generalized Jacobi polynomials, SIAM J. Math. Anal. 15 (1984), 805-833. MR 86k:33018
  • [W] J. A. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), 690-701. MR 82a:33014

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 33C50, 33D45

Retrieve articles in all journals with MSC (1991): 33C50, 33D45

Additional Information

J. F. van Diejen
Affiliation: Department of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan
Address at time of publication: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 1, Chile

Keywords: Orthogonal polynomials in several variables, difference and differential equations, recurrence relations, orthonormalization constants, Selberg type integrals, quantum integrable $n$-particle systems
Received by editor(s): April 8, 1996
Received by editor(s) in revised form: November 25, 1996
Additional Notes: Work supported by the Japan Society for the Promotion of Science (JSPS) and by a Monbusho Grant-in-Aid.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society