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COMBINATORIAL FAMILIES THAT ARE EXPONENTIALLY
FAR FROM BEING LISTABLE IN GRAY CODE SEQUENCE

TED CHINBURG, CARLA D. SAVAGE, AND HERBERT S. WILF

Abstract. Let S(n) be a collection of subsets of {1, ..., n}. In this paper we
study numerical obstructions to the existence of orderings of S(n) for which
the cardinalities of successive subsets satisfy congruence conditions. Gray code
orders provide an example of such orderings. We say that an ordering of S(n)
is a Gray code order if successive subsets differ by the adjunction or deletion of
a single element of {1, . . . , n}. The cardinalities of successive subsets in a Gray
code order must alternate in parity. It follows that if d(S(n)) is the difference
between the number of elements of S(n) having even (resp. odd) cardinality,
then |d(S(n))| − 1 is a lower bound for the cardinality of the complement of
any subset of S(n) which can be listed in Gray code order.

For g ≥ 2, the collection B(n, g) of g-blockfree subsets of {1, . . . , n} is
defined to be the set of all subsets S of {1, . . . , n} such that |a − b| ≥ g if
a, b ∈ S and a 6= b. We will construct a Gray code order for B(n, 2). In
contrast, for g > 2 we find the precise (positive) exponential growth rate of
d(B(n, g)) with n as n →∞. This implies B(n, g) is far from being listable in
Gray code order if n is large. Analogous results for other kinds of orderings
of subsets of B(n, g) are proved using generalizations of d(B(n, g)) . However,
we will show that for all g, one can order B(n, g) so that successive elements
differ by the adjunction and/or deletion of an integer from {1, . . . , n}.

We show that, over an A-letter alphabet, the words of length n which
contain no block of k consecutive letters cannot, in general, be listed so that
successive words differ by a single letter. However, if k > 2 and A > 2 or if
k = 2 and A > 3, such a listing is always possible.

1. Introduction

1.1. About Gray codes. Suppose we have some set S of objects, and we want
to make a list of all of the objects in S. An interesting way to do that, particularly
if our goal is to design a fast listing algorithm, might be to define a certain set of
elementary transformations, and then attempt to make a list of the elements of S
in such a way that each element is obtained from its immediate predecessor on the
list by a single elementary transformation. That might or might not be possible to
do. If it is possible then we may say that a Gray code for this situation does exist,
and it is the list that satisfies the conditions stated.

If S is the set of all 2n of the subsets of a set of n things, we might take for the
elementary transformations the operations of adjoining a single element to a set or
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of deleting a single element from the set. It is possible then, for every n, to list S
in Gray code order. For instance when n = 3 we have the list

S = {{∅}, {1}, {1, 2}, {2}, {2, 3}, {1, 2, 3}, {1, 3}, {3}}

which is an example of the family of codes that was originally found by Frank Gray
[4].

One recognizes at once that we are simply asking if a certain graph has a Hamil-
ton path or not, a notoriously difficult problem in graph theory. The vertices are
the objects in the set S, and there is an edge from object u to object v if there is
an elementary transformation that takes u to v.

It is often natural to consider whole families of S at one time, rather than just
a single S. Equivalently, one can ask whether every member of a certain family
of graphs has a Hamiltonian path. An example is the family of all Cayley graphs
associated to pairs (G, T ) in which G is a group and T is a set of generators for
G. One of the major outstanding problems of the field is to decide whether all
such Cayley graphs are Hamiltonian. That is, is it true that we can make a list
of the group elements in such an order that each element g is obtainable by the
application of a single generator or its inverse to its immediate predecessor? This
problem seems very difficult.

For surveys of the general topic of Gray codes, for many more examples of such
codes in a variety of combinatorial families, and for pointers to recent literature in
the subject we suggest [1, 3, 6, 8].

1.2. About this paper. In this paper, we study a numerical obstruction to being
able to list in Gray code order a collection of subsets of {1, . . . , n}. We show
that this obstruction grows exponentially in n for the collection of “g-blockfree”
subsets of {1, . . . , n} if and only if g > 2. The obstruction in question is one of an
infinite family of numerical invariants (described precisely below) which are useful
for studying variants of Gray code orders.

We will say that an ordering of a collection S(n) of subsets of {1, . . . , n} is a
Gray code order if successive subsets differ by the adjunction or deletion of a single
element of {1, . . . , n}. The cardinalities of successive subsets in a Gray code order
must alternate in parity. Thus one sees that if d(S(n)) is the difference between the
number of elements of S(n) having even (resp. odd) cardinality, then |d(S(n))| − 1
is a lower bound for the cardinality of the complement of any subset of S(n) which
can be listed in Gray code order. One should note that there is no guarantee that
this lower bound can be achieved.

For g ≥ 2, define the collection B(n, g) of g-blockfree subsets of {1, . . . , n} to be
the set of all subsets S of {1, . . . , n} such that |a − b| ≥ g if a, b ∈ S and a 6= b.
We will describe explicitly a Gray code order for B(n, 2). In contrast, for g > 2 we
find the precise (positive) exponential growth rate of d(B(n, g)) with n as n →∞.
This provides a lower bound which increases exponentially with n for the size of
the complement of any subset of B(n, g) which can be listed in Gray code order.
It remains an open question to discover how close one can come to achieving this
lower bound. For example, the size of B(n, g) also grows exponentially with n at
a rate strictly larger than the growth rate of d(B(n, g)). Thus we do not know if
one can find for all n a subset of B(n, g) listable in Gray code order whose size is
at least a fixed positive fraction of the size of B(n, g).
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Given a collection S = {S(n)}∞n=1 as above, we consider the following numerical
invariants generalizing the growth rate as n →∞ of the parity difference function
d(S(n)). Suppose v ≥ 1 and that h : Z 7→ C is a nonzero complex valued function
which is periodic mod v. If the limit

ch,S = lim
n→∞

log |∑S∈S(n) h(#S)|
n

(1.1)

exists and is positive, we will say S has an exponential color at h. If this is true for
all nonzero h and v ≥ 1, we will say S is exponentially colorful. This terminology
arises from assigning a color to each residue class modulo v, and from considering
the sum

∑
S∈S(n) h(#S) to be the output of a color detector described by h when

applied to S(n). The condition ch,S > 0 signifies that the strength of the mixture
of colors in the elements of S(n) which is measured by the detector associated to h
increases exponentially with n as n →∞.

Suppose v = 2 and that h−1(j) = (−1)j . Then
∑

S∈S(n) h−1(#S) is simply
d(S(n)), and we have seen |d(S(n))| ≤ 1 if S(n) can be listed in Gray code order.
Thus S cannot be exponentially colorful if the S(n) have Gray code orders.

In contrast, we will show that B(g) = {B(n, g)}∞n=1 is exponentially colorful for
g > 2, and we will evaluate the constant ch,B(g) explicitly for all h. ( If g = 2 and
S = B(2) the same calculation shows ch,B(2) > 0 unless h is a constant multiple
of the function h−1 above.) The proof uses generating functions and results of
Fel’dman on linear forms in logarithms of algebraic numbers. This implies, for
example, that if g ≥ 2, v > 1, m, d > 0 and (g, v) 6= (2, 2), then for sufficiently large
n the elements of B(n, g) cannot be listed in such a way that

#al ≡ #al+m mod v if l ≥ d(1.2)

where #al is the cardinality of the lth element al on the list. (There is in fact a
lower bound which increases exponentially with n for the size of the complement
of any subset of B(n, g) which can be listed in this way.) However, we will show
in Section 7 that the elements of B(n, g) can be listed so as to satisfy the less
stringent adjacency requirement that successive elements differ by the adjunction
and/or deletion of an integer from {1, . . . , n}.

In Section 8 we show that, over an A-letter alphabet, the words of length n which
contain no block of k identical letters cannot, in general, be listed so that successive
words differ by a single letter. However, we show in Section 9 that if k > 2 and
A > 2 or if k = 2 and A > 3, such a listing is always possible.

We note some related work in Section 10.

2. Sets with no consecutive elements

We will say that a set {a1, a2, . . . , ak} with a1 < a2 < · · · < ak is blockfree if
aj+1 − aj > 1, for all 1 ≤ j ≤ k − 1. The blockfree subsets of {1, 2, 3, 4, 5}, for
example, are

∅, {1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {1, 3, 5}.(2.1)

There are 13 such subsets of {1, 2, 3, 4, 5}. In general, it is an ancient result that
there are Fn+1, the Fibonacci number, blockfree subsets of {1, . . . , n}, the proof
being via the obvious recurrence and initial conditions.

We would like, for a given n, to list these sets in Gray code order, i.e., in a
sequence such that we can always pass from a set to its successor by the adjunction
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or deletion of a single element. For example, the list (2.1) can be placed in such a
sequence as

{1, 4}, {4}, {2, 4}, {2}, ∅, {1}, {1, 3}, {3}, {3, 5}, {1, 3, 5}, {1, 5}, {5}, {2, 5}.
This is not hard to do, by taking a cue from the Fibonacci recurrence. We use

the notation [L,L′] for the list that is obtained by taking first the elements of the
list L and then those of L′. The list L is L with its elements listed in reverse order.
The list a⊗ L is obtained by adjoining the element a to each set in the list L.

Consider the lists L0,L1,L2, . . . , that are recursively manufactured as follows:
(a) L0 = [∅] and L1 = [∅, {1}].
(b) For each n = 2, 3, . . . , put Ln = [Ln−1, n⊗ Ln−2].

Theorem 2.1. The lists Ln, as constructed above, are lists of all of the blockfree
subsets of {1, . . . , n}, in Gray code order. Furthermore, the first member of Ln is
the set Hn−1, and its last member is the set Hn, where Hn = {n, n− 3, n− 6, . . . },
i.e.,

Hn = {n− 3j : 0 ≤ j ≤ b(n− 1)/3c}.
Proof. The proposition is certainly true for n = 0, 1. Suppose it is true for
0, 1, . . . , n − 1. Then step (b) of the construction shows that the first and last
members of Ln are as claimed. Since each of the components of step (b) are Gray
codes, by induction, it remains only to show that the transition from the last mem-
ber of the list Ln−1 to the first member of the list n⊗ Ln−2 requires only a single
adjunction or deletion. In fact, one can readily check that the transition is accom-
plished simply by adjoining the element n.

3. A generalization

Say that a set a1 < a2 < · · · < ak is g-blockfree if aj+1 − aj ≥ g for all 1 ≤
j ≤ k − 1. For n ≥ 0, g ≥ 1, let B(n, g) denote the collection of g-blockfree
subsets of {1, 2, . . . , n}. Then B(n, 2) is just the collection of blockfree subsets of
{1, 2, . . . , n} from Section 1 and B(7, 3) is the set

{∅, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {1, 4}, {1, 5}, {1, 6}, {1, 7},

{2, 5}, {2, 6}, {2, 7}, {3, 6}, {3, 7}, {4, 7}, {1, 4, 7}}.
B(n, g) can be recursively defined for n ≥ 0, g ≥ 1 by

B(n, g) =


∅, if n = 0;
{∅, {1}, {2}, . . . , {n}}, if 1 ≤ n ≤ g;
B(n− 1, g) ∪ n⊗B(n− g, g), if n > g.

(3.1)

Definition 3.1. Suppose T is an ordered list of subsets of {1, . . . , n}. Let al be
the lth element with respect to the given ordering, and let #al be the cardinality of
al. Let m, v and d be positive integers. We will say the ordering of T is eventually
periodic mod v of period m starting at position d if

#al ≡ #al+m mod v if l ≥ d.(3.2)

We will say T is in Gray code order if the successor of each element of T differs
from that element by the adjunction or deletion of a single element.
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Remark 3.2. If T is eventually periodic mod v of period m starting at some position
d, then it is also eventually periodic mod v of period m′ starting at some position
d for every positive integral multiple m′ of m. In Theorem 6.4 below we discuss a
recurrence condition on an ordering which forces it to be eventually periodic. If T
is in Gray code order, then the parities of the orders of successive elements of T
must alternate, so T is eventually periodic mod 2 of period 2 starting at position
1.

We can now state our main result concerning Gray code orderings of B(n, g).

Theorem 3.3. If g > 2, then except for finitely many values of n, there cannot
be a listing of the g-blockfree subsets of {1, 2, . . . , n} in which the cardinalities of
successive sets always have opposite parities. In particular, apart from finitely many
n, there cannot be a Gray code ordering of B(n, g). In fact, there is a lower bound
which increases exponentially with n for the cardinality of the complement in B(n, g)
of any ordered subset T which is in Gray code order.

This result is a special case of:

Theorem 3.4. Suppose g ≥ 2, v ≥ 2, m, d > 0 and (g, v) 6= (2, 2). There are
effectively computable constants c, c′ > 0 which depend on g, v, m and d and which
have the following property. If T is an ordered subset of B(n, g) which is eventually
periodic mod v of period m starting at position d, then

#(B(n, g)− T ) ≥ c′ecn − 1.(3.3)

In particular, if n is sufficiently large, it is impossible that T = B(n, g).

The lim sup of the constants c in Theorem 3.4 which result from our method is
given in Theorem 7.5. This method relies on numerical invariants of collections of
subsets of {1, . . . , n} which are defined in the next section.

4. Colors of collections of subsets of {1, . . . , n}
We begin this section by attaching some numerical invariants to collections of

subsets of {1, . . . , n}.
Definition 4.1. Suppose T is a collection of subsets of {1, . . . , n} and that v ≥ 1
is an integer. Let V (v) be the C vector space of all functions h : Z 7→ C which
are periodic mod v, i.e. for which h(a + v) = h(a) for all a ∈ Z. Let 〈, 〉 be the
Hermitian inner product on V (v) defined by 〈h1, h2〉 =

∑v
j=1 h1(j)h2(j). Define

the color distribution of T to be the function C(T ) ∈ V (v) such that for all j ∈ Z,
C(T )(j) ∈ Z is the number of subsets S ∈ T for which #S ≡ j mod v. The color
of T with respect to h ∈ V (v) is defined to be

dh(T ) =
∑
S∈T

h(#S) = 〈h, C(T )〉.(4.1)

Example 4.2. Define h±1(j) = (±1)j for all j. Then dh1(T ) is the cardinality #T
of T , and dh−1(T ) is the difference between the number of elements of T of even
cardinality and those of odd cardinality.

The following properties of dh(T ) are clear.
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Theorem 4.3. The function h 7→ dh(T ) is a C-valued linear form on V (v). Let
(Z/v)dual be the character group of Z/v. By character theory, we have

h =
∑

χ∈(Z/v)dual

aχχ(4.2)

for some constants aχ ∈ C which are uniquely determined by h. Then

dh(T ) =
∑

χ∈(Z/v)dual

aχdχ(T ).(4.3)

We will call dχ(T ) the primary color of T associated to χ ∈ (Z/v)dual.

Theorem 4.4. For all collections T and T ′ of subsets of {1, . . . , n} one has

dh(T ∪ T ′) = dh(T ) + dh(T ′)− dh(T ∩ T ′).(4.4)

In particular, if T ⊂ T ′, then

dh(T ′) = dh(T ) + dh(T ′ − T ).(4.5)

One has

max{|h(j)| : j ∈ Z} · {#T } ≥ |dh(T )|.(4.6)

The following result is useful for bounding from below the cardinalities of com-
plements of subsets of collections of subsets of {1, . . . , n}.
Theorem 4.5. Suppose T and T ′ are sets of subsets of {1, . . . , n}, T ⊂ T ′, and
that h is nonzero. Let M(h) = max{|h(j)| : j ∈ Z} > 0. Then

#(T ′ − T ) ≥ |dh(T ′ − T )|
M(h)

=
|dh(T ′)− dh(T )|

M(h)
≥ ||dh(T ′)| − |dh(T )||

M(h)
.(4.7)

The lower bounds in (4.7) are continuous functions of the image [h] of h in the
projective space PV (v) = (V (v)−{0})/∼, where h ∼ h′ if h = ch′ for some nonzero
constant c ∈ C. Since PV (v) is compact, these lower bounds assume a maximum at
some [h].

Proof. This is clear from Theorem 4.4.

Corollary 1. Suppose that for some h, |dh(T )| ≤ M1 in Theorem 4.5. Then

#(T ′ − T ) ≥ |dh(T ′)| −M1

M(h)
.(4.8)

Example 4.6. Suppose T is a subset of {1, . . . , n} which is in Gray code order.
Define h−1(j) = (−1)j for all j ∈ Z. Then

|dh−1(T )| = |
∑
S∈T

(−1)#S| ≤ 1(4.9)

since the parities of successive elements of T alternate. Thus (4.7) shows

#(T ′ − T ) ≥ ||dh−1(T
′)| − |dh−1(T )|| ≥ |dh−1(T

′)| − 1.(4.10)
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5. Colorful sequences

Rather than considering dh(T ) for a fixed T , it is useful to consider the asymp-
totic behavior of dh(T ) as T ranges over some infinite set. The following definition
generalizes the one given in the introduction.

Definition 5.1. Let S = {S(n)}∞n=1 be an infinite sequence of collections S(n) of
subsets of {1, . . . , n}. Let G : Z 7→ R be a function such that limn→∞G(n) = +∞.
Suppose v ≥ 1 and that h : Z 7→ C is a nonzero function which is periodic mod v.
Let log+(r) = max(log(r), 0) for r ≥ 0. Define

c+(h, G,S) = lim
n→∞ sup

log+ |dh(S(n))|
G(n)

(5.1)

and

c−(h, G,S) = lim
n→∞ inf

log+ |dh(S(n))|
G(n)

.(5.2)

If these limits (which lie in R≥0 ∪ {±∞}) are equal, we will denote their common
value by c(h, G,S). We will say that S has a color at h with respect to G if
c(h, G,S) exists and is positive.

Example 5.2. If G(n) = n for all n, we will call c(h, G,S) the exponential color
of S at h, which we will abbreviate to ch,S .

Example 5.3. The most intrinsic choice of G(n) is G(n) = log #S(n), provided
limn→∞#S(n) = ∞. If c(h, G,S) exists in this case, we will call it the natu-
ral color of S at h. Note that c+(h, G,S) ≤ 1 when G(n) = log #S(n), since
log+ |∑S∈S(n) h(#S)| ≤ δ + log #S(n) for some constant δ which depends only on
h, and G(n) →∞ by assumption.

The following result clarifies the variation of color functions with h.

Theorem 5.4. Recall that V (v) is the C vector space of all functions h : Z 7→ C
which are periodic mod v (cf. Definition 5.1). Fix G as in Definition 5.1. For all
q ∈ R ∪ {∞}, the subset

V (v, q) = V (v, q,S) = {h ∈ V (v) : c+(h, G,S) ≤ q}(5.3)

is a C-subspace of V (v). These subspaces form a nondecreasing filtration of V (v) =
V (v,∞,S). The breaks in the filtration occur at a finite subset {q1, q2, . . . , qd} of
{q ∈ R : q > 0} ∪ ∞ of cardinality d ≤ dimCV (v) = v. On ordering the qi so
0 < q1 < q2 < · · · < qd, we have distinct subspaces

V (v, 0) ⊂ V (v, q1) ⊂ V (v, q2) ⊂ . . . ⊂ V (v, qd) = V (v,∞) = V (v)(5.4)

with V (v, q) = V (v, qi) if qi ≤ q < qi+1, where we let q0 = 0.

Definition 5.5. The sequence of ordered pairs {(qi, V (v, qi))}i appearing in (5.4)
will be called the upper color spectrum of S with respect to G. Call V (v, 0) the
nullspace of S mod v.

Proof of Theorem 5.4. Suppose α1, α2 ∈ C and that h1, h2 ∈ V (v). For h = α1h1 +
α2h2, one has dh(S(n)) = α1dh1(S(n)) + α2dh2(S(n)). Therefore

log+|dh(S(n))| ≤ δ + max(log+|dh1(S(n))|, log+|dh2(S(n))|)(5.5)
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for some constant δ which depends only on α1 and α2. Since G(n) →∞ as n →∞,
equations (5.1) and (5.5) show

c+(h, G,S) ≤ max(c+(h1, G,S), c+(h2, G,S)).(5.6)

This implies V (v, q) in (5.3) is a C-subspace of V (v), and the remaining assertions
in Theorem 5.4 follow from this.

6. Almost periodic collections of subsets

Definition 6.1. Suppose T is a collection of subsets of {1, . . . , n}. Let m and v
be positive integers. Recall from Definition 4.1 that C(T ) : Z 7→ Z is defined by
letting C(T )(j) be the number of subsets S ∈ T for which #S ≡ j mod v. The
almost periodicity of T mod v with respect to the period m is defined to be the
smallest nonnegative real number sm(T ) having the following property. For each
j ∈ Z, there are Cm(T )(j) ∈ Z and Em(T )(j) ∈ R such that

−sm(T ) ≤ Em(T )(j) ≤ sm(T )

and

C(T )(j) =
#T

m
· Cm(T )(j) + Em(T )(j).(6.1)

Lemma 6.2. One has sm(T ) ≤ #T
2m . For each integer j ∈ Z, the integers Cm(T )(j)

and Em(T )(j) in (6.1) are uniquely determined provided we require Em(T )(j) = #T
2m

if |Em(T )(j)| = #T
2m . Let Cm(T ) and Em(T ) be the resulting functions from Z to

R. Then Cm(T ) and Em(T ) are periodic mod v, and 0 ≤ Cm(T )(j) ≤ m for all j.

Proof. Given j, there are unique a ∈ Z and b ∈ R such that −#T
2m < b ≤ #T

2m and
C(T )(j) = #T

m a + b. Hence Em(T ) ≤ #T
2m , and Cm(T )(j) and Em(T )(j) are unique

provided we require Em(T )(j) = #T
2m if |Em(T )(j)| = #T

2m . Since C(T ) is periodic, so
are Cm(T ) and Em(T ). Finally, 0 ≤ C(T )(j) ≤ #T and |Cm(T )(j)− m

#T C(T )(j)| ≤
1/2, so 0 ≤ Cm(T )(j) ≤ m since Cm(T )(j) is an integer.

We now discuss some examples of T of bounded almost periodicity.

Theorem 6.3. Suppose that T is periodic mod v of period m starting at position
d, in the sense of Definition 3.1. Then

sm(T ) ≤ m + d− 1.(6.2)

Thus eventually periodic sequences have almost periodicity bounded by a function
of m and d alone.

Proof. We can find an initial interval T0 of elements in the ordering of T such
that #T0 ≤ d − 1 + m and so that as a runs over T − T0, the congruence class
#a mod v runs over an integral number of periods of length m. Thus C(T )(j) =
βj · #T−#T0

m + λj for some integers 0 ≤ βj ≤ m and 0 ≤ λj ≤ d− 1 + m. Therefore

C(T )(j) =
#T

m
· βj + (

−#T0 · βj

m
+ λj) =

#T

m
βj + εj(6.3)

where

−(d− 1 + m) ≤ −#T0 · βj

m
≤ εj ≤ λj ≤ d− 1 + m.(6.4)

Now (6.4) and Definition 6.1 give (6.2).
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Theorem 6.4. Suppose v ≥ 2 and that T is an ordered collection of subsets of
{1, . . . , n}. Let al be the lth element of T with respect to the given ordering, and
let bl = #al mod v. If T is periodic mod v of period m starting at position d, then
bl = bl−m for l ≥ d + m. Conversely, suppose there are integers l0 ≥ l1 > 0 such
that for all l ≥ l0, bl depends only on the sequence bl−l1 , . . . , bl−1. There is an
integer m so 0 < m ≤ vl1 such that T is periodic mod v of period m starting at
position l0 + vl1 .

Proof. The first statement is clear from Definition 6.1. Suppose now that there are
l0 and l1 as in Theorem 6.4. By the pigeonhole principle, there are integers l2 and
l3 with l0 ≤ l2 < l3 ≤ l0 + vl1 such that (bl3−l1 , . . . , bl3−1) = (bl2−l1 , . . . , bl2−1).
The hypothesis of the converse statement in Theorem 6.4 now implies bl = bl+l3−l2

if l ≥ l2. Hence we may let m1 = l3 − l2 ≤ vll .

Lemma 6.5. Suppose h ∈ V (v). Then with the notation of Definition 6.1,

|〈h, C(T )〉 − #T

m
〈h, Cm(T )〉| ≤ sm(T ) · v ·M(h)(6.5)

when M(h) = max{|h(j)| : j ∈ Z}, where 〈h, C(T )〉 = dh(T ).

Proof. For h ∈ V (v) one has

dh(T ) =
∑
S∈T

h(#S) = 〈h, C(T )〉 =
v∑

j=1

h(j) · C(T )(j)(6.6)

by Definition 4.1. We now sum over j = 1, . . . , v the product of h(j) with the right
side of (6.1) to have

〈h, C(T )〉 − #T

m
〈h, Cm(T )〉 =

v∑
j=1

h(j) ·Em(j).(6.7)

Since |Em(j)| ≤ sm(j) for all j, (6.7) gives (6.5).

Corollary 2. If h ∈ V (v) and 〈h, Cm(T )〉 = 0, then

|dh(T )| = |〈h, C(T )〉| ≤ sm(T ) · v ·M(h).(6.8)

Thus if T ⊂ T ′ for some collection T ′ of subsets of {1, . . . , n}, and h 6= 0, then
(4.7) implies

#(T ′ − T ) ≥ |dh(T ′)|
M(h)

− sm(T ) · v.(6.9)

Definition 6.6. Let Vm(v) ⊂ V (v) be the finite set of functions C : Z 7→ Z that
are periodic mod v and take values in {0, . . . , m}. Let G : Z 7→ R be a function
such that limn→∞G(n) = ∞. For each C ∈ Vm(v), define

bG(C) = sup{c−(h, G,S) : h ∈ V (v), M(h) = 1 and 〈h, C〉 = 0}
where M(h) = max{|h(j)| : j ∈ Z}, c−(h, G,S) is defined as in Definition 5.1 and
〈, 〉 is the usual Hermitian inner product on V (v). Let bG : Vm(v) 7→ R ∪ {∞} be
the resulting function C 7→ bG(C).

Example 6.7. Suppose c(h, G,S) is well defined for all h ∈ V (v). Then c(h, G,S)
= c−(h, G,S) is determined by where h lies in the filtration

V (v, 0) ⊂ V (v, q1) ⊂ V (v, q2) ⊂ . . . ⊂ V (v, qd) = V (v,∞) = V (v)(6.10)
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described in Theorem 5.4. Let H(C) = {h ∈ V (v) : 〈C, h〉 = 0}, so H(C) is a
hyperplane in V (v) if C 6= 0. We find bG(C) = inf{q : H(C) ⊂ V (v, q)} must be
either qd or qd−1, since (6.10) is an increasing filtration of vector spaces and H(C)
has codimension 0 or 1 in V (v).

Theorem 6.8. Suppose m > 0, v ≥ 2 and d > 0. Let S = {S(n)}∞n=1 be given.
Let C be one of the finitely many elements of V (v, m), and suppose r < bG(C)
in the notation of Definition 6.6. There is a constant c0 > 0 depending only on
m, v, d, C, r for which the following is true. Suppose that T is an ordered subset of
S(n) so that the almost periodicity sm(T ) of T mod v with respect to the period m
satisfies sm(T ) ≤ d. Then if Cm(T ) = C, we have #S(n)− T ≥ c0e

rG(n) − 1.

Proof. Suppose T is as in the statement of the theorem and Cm(T ) = C. By
Definition 6.6, there is an h ∈ V (v) such that M(h) = 1, 〈h, C〉 = 〈h, Cm(T )〉 = 0
and c−(h, G,S) > r. From Corollary 2 we have

#(S(n)− T ) ≥ |dh(S(n))|/M(h) − sm(T ) · v ≥ elog+ |dh(S(n))| − 1− dv.(6.11)

If r ≤ 0, then we can choose c0 so the required lower bound #S(n)−T ≥ c0e
rG(n)−1

is trivial. Suppose r > 0. Then c−(h, G,S) > r > 0 implies log+ |dh(S(n))| >
rG(n) > 0 for n sufficiently large. Hence (6.11) shows that any c0 > 0 will suffice
for n sufficiently large, so if c0 > 0 is sufficiently small, we will have the required
lower bound for all n.

7. The color of B(n, g)

To state precisely our main result concerning dh(B(n, g)), we require

Definition 7.1. Suppose ω is a root of unity and g ≥ 2. Define fω(x) = 1−x−ωxg.
Let rω be the minimal absolute value of a (real or complex) root of fω(x). Suppose
now that h : Z 7→ C is a periodic function mod v for some integer v ≥ 2. By (4.3),
we can write

dh(T ) =
∑

χ∈(Z/v)dual

aχ dχ(T )(7.1)

for some constants aχ which are uniquely determined by h. If h = 0 let rh = 0,
and otherwise define

rh = min{rχ(1) : χ ∈ (Z/v)dual and aχ 6= 0}.(7.2)

Theorem 7.2. Suppose g ≥ 2 and v ≥ 2 are integers. Let h : Z 7→ C be a nonzero
function which is periodic mod v. Define h−1(j) = (−1)j for all j ∈ Z. If g = 2
and h = c · h−1 for some constant c, then rh = 1 and

dh(B(n, g)) = c · dh−1(B(n, g)) ∈ {0, c,−c}.(7.3)

In this case, the exponential color ch,B(g) = c(h, G,B(g)) of B(g) = {B(g, n)}∞n=1 at
h with respect to the function G(n) = n is 0 (cf. Example 5.2). Suppose now that
g 6= 2 or that h 6= c · h−1 for all constants c. Then rh < 1 and

ch,B(g) = lim
n→∞

log |dh(B(n, g))|
n

= − log rh > 0.(7.4)

The convergence of the limit (7.4) can be shown effectively.

Corollary 3. The sequence B(g) = {B(n, g)}∞n=1 is exponentially colorful, in the
sense of §1, if and only if g > 2.
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Concerning the constants ch,B(g) we will prove:

Theorem 7.3. Suppose g ≥ 2 and v ≥ 2. Let χ and χ′ be characters of Z/v.
Define χ = χ−1 to be the complex conjugate of χ. Then cχ,B(g) = cχ′,B(g) if and
only if χ′ = χ or χ. If χ1 is the trivial character, then

cχ,B(g) ≤ cχ1,B(g)(7.5)

with equality if and only if χ = χ1. Let ω(ρ) = e2πiρ. As ρ increases from 0 to 1/2,
the function rω(ρ) ≤ 1 is monotonically increasing.

Remark 7.4. As in Theorem 4.3, |dχ(B(n, g))| is the strength of the primary color
of B(n, g) which is associated to the character χ. Theorems 7.2 and 7.3 show that
the rate of growth with n of the strength |dh(B(n, g))| of an arbitrary color of
B(n, g) can be determined in the following way. First write h =

∑
χ aχχ as a linear

combination of characters, and assume h 6= 0. There will be a character χ for which
cχ,B(g) is maximal among all χ which appear in h, i.e. for which aχ 6= 0. This χ will
be unique if aχ = 0 and will be determined up to complex conjugation otherwise.
As n →∞, the linear combination∑

ξ=χ or χ

aξdξ(B(n, g))(7.6)

of primary colors becomes the dominant term in the formula (4.3) for dh(B(n, g)),
and

ch,B(g) = cχ,B(g) = cχ,B(g).(7.7)

Putting together Remark 7.4, Theorem 7.3 and Theorem 7.2 shows

Corollary 4. The upper color filtration

V (v, 0) ⊂ V (v, q1) ⊂ V (v, q2) ⊂ . . . ⊂ V (v, qd) = V (v,∞) = V (v)(7.8)

of Theorem 5.4 when S = B(g) can be described in the following way. If g = 2
and v is even, there are d = v/2 breaks in the filtration, and V (v, 0) = C · h−1. If
g > 2 or v is odd, there are d = 1 + [ v

2 ] breaks in the filtration, where [x] is the
greatest integer less than x, and V (v, 0) = {0}. Let ζ = exp(2π

√−1
v ). In all cases,

for i = 0, . . . , d− 1, one has qd−i = −log|rζi |, where rω is defined as in Definition
7.1. The subspace V (v, qd−i) is the C-linear span of the characters χ of Z/v for
which χ(1) = ζj and v − i ≥ j ≥ i.

The proofs of Theorems 7.2 and 7.3 will be given in the next sections. In view of
Theorem 6.3, the following result strengthens Theorem 3.4, which implies Theorem
3.3 by Example 4.6.

Theorem 7.5. Suppose g ≥ 2, v ≥ 2, d, m > 0 and that (g, v) 6= (2, 2). Let rζ < 1
be the minimal absolute value of a root of 1 − x − ζxg when ζ = e

2π
√−1
v . Suppose

0 ≤ r < −log|rζ |. There is a constant c0 > 0 depending on g, m, v, d, r for which the
following is true. Suppose that T is an ordered subset of S(n) so that the almost
periodicity sm(T ) of T mod v with respect to the period m satisfies sm(T ) ≤ d.
Then

#S(n)− T ≥ c0e
rn − 1.

Proof. This is clear from Example 6.7 and Theorem 6.8.
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In view of Theorem 6.4, Theorem 3.4 gives

Corollary 5. Suppose g, v and m are as in Theorem 3.4, and that l0 ≥ l1 > 0 are
integers. If n is sufficiently large, it is impossible to list the elements of B(n, g) so
that for l ≥ l0, bl depends only the sequence bl−l1 , . . . , bl−1, where bj is the residue
class mod v of the cardinality of the jth element of B(n, g).

Example 7.6. Suppose (g, v) 6= (2, 2). Theorem 3.3 shows that for n sufficiently
large, there is no way to list the elements of B(n, g) so that the difference of the
cardinalities of successive elements lies in a fixed residue class mod v.

Remark 7.7. The lower bound on #(B(n, g) − T ) found in Theorem 7.5 grows at
a strictly smaller exponential rate than #B(n, g) as n →∞. This will be the case,
for example, if the eventually periodic ordering of T results from the assumption
that T has a Gray code order. It thus remains an interesting open question whether

#T
#B(n,g) must tend to 0 as n → ∞ if T is a subset of B(n, g) having a Gray code
order.

8. Feasibility and enumeration

Theorem 8.1. For integer g ≥ 1, let f(n, g, k) be the number of g-blockfree subsets
of {1, 2, . . . , n} whose cardinality is k. Then we have

Fg(x, y) def
∑
n,k

f(n, g, k)xnyk

=
1 + xy 1−xg−1

1−x

1− x− yxg
(8.1)

= x1−g

(
1

1− x− yxg
− (1 + x + . . . + xg−2)

)
.

Suppose now that h : Z 7→ C is periodic mod v, so

h =
∑

χ∈(Z/v)dual

aχ χ(8.2)

for some constants aχ as in (4.2). Then

∑
n≥0

dh(B(n, g)) xn =
∑

χ∈(Z/v)dual

aχFg(x, χ(1))

=
∑

χ∈(Z/v)dual

aχx1−g

(
1

1− x− χ(1)xg
− (1 + x + . . . + xg−2)

)
.

(8.3)

Proof. It follows immediately from (3.1) above that

f(n, g, k) =


f(n− 1, g, k) + f(n− g, g, k − 1), if n > g, k ≥ 0;
δk,0 + nδk,1, if 0 ≤ n ≤ g, k ≥ 0;
0, if n < 0 or k < 0.

(8.4)

If we multiply (8.4) by xnyk and sum over n, k we obtain the second equality in (8.1)
after the usual manipulation. The third equality in (8.1) is then checked by cross
multiplying. Now (8.3) follows from (8.1), Definition 4.1 and Theorem 4.3.
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Remark 8.2. The radius of convergence of the power series (1−x−χ(1)xg)−1 about
x = 0 is the minimal absolute value rχ(1) of a root of 1 − x − χ(1)xg. In view of
Definition 7.1, this implies rh is a lower bound for the radius of convergence of the
power series on the right side of (8.3). This lower bound is consistent via (8.3) and
the root test of freshman calculus with the growth rate for dh(B(n, g)) as n → ∞
which is stated in Theorem 7.2. We cannot prove Theorem 7.2 directly in this way,
though, since the radius of convergence of a power series does not determine bounds
on all of its coefficients.

To prove Theorems 7.2 and 7.3 we now analyze the coefficients of the power
series in (8.3).

Theorem 8.3. Suppose g > 1 and that |ω| = 1. Write

fω(x) = −ωxg − x + 1 = −ω ·
g∏

i=1

(x− αi(ω))(8.5)

for some complex numbers αi(ω). Let f ′ω(x) = −ωgxg−1 − 1 be the derivative of
fω(x). The αi(ω) are distinct, not in {0, 1}, and f ′ω(αi(ω)) 6= 0 for all i. One has

1
fω(x)

= −
g∑

i=1

∑
q≥0

xq

αi(ω)q+1f ′ω(αi(ω))
.(8.6)

For h as in (8.2) and n ≥ g − 1 one has

dh(B(n, g)) = −
∑

χ∈(Z/v)dual

g∑
i=1

aχ

αi(χ(1))n+gf ′χ(1)(αi(χ(1)))
.(8.7)

Here each of the αi(χ(1)) are algebraic integers.

Proof. Suppose t is a common root of f ′ω(x) = −ωgxg−1 − 1 and fω(x). Then
0 = gfω(t) − tf ′ω(t) = (1 − g)t + g, so t = g/(g − 1). But then |t| > 1, so
0 = |f ′ω(t)| ≥ |−ωgtg−1|−1 > 0, which is a contradiction. If follows that f ′ω(x) and
fω(x) have no common roots, so fω(x) has simple roots. Because fω(0) 6= 0 6= fω(1),
none of the αi(ω) are in {0, 1}. Hence by partial fractions we have

1
fω(x)

=
g∑

i=1

1
(x− αi(ω))f ′ω(αi(ω))

=
g∑

i=1

1
f ′ω(αi(ω))(−αi(ω))(1− (x/αi(ω)))

(8.8)

= −
g∑

i=1

∑
q≥0

xq

αi(ω)q+1f ′ω(αi(ω))

which proves (8.6). Now (8.7) follows from (4.3). If ω is a root of unity (such as
χ(1)), then αi(ω) is a root of xg + ω−1x − ω−1. Since ω−1 is an algebraic integer
in this case, so is αi(ω).

Formula (8.7) shows that for a fixed g, |dh(B(n, g))| is bounded above by an ex-
ponential function of n. To determine when exponential growth is in fact achieved,
we now analyze the roots of fω(x).
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Theorem 8.4. Suppose g > 1 and that |ω| = |ω′| = 1. Suppose µ (resp. µ′) is a
root of fω(x) = −ωxg − x + 1 (resp. fω′(x)) and |µ| = |µ′| = r. If µ = µ′, then
ω = ω′. If µ 6= µ′, then ω′ = ω and µ′ = µ.

Proof. Note first that neither µ nor µ′ is 0, since fω(0) = fω′(0) 6= 0. If µ = µ′,
then

ω =
1− µ

µg
=

1− µ′

(µ′)g
= ω′.(8.9)

Suppose now that µ 6= µ′. Then since |ω| = |ω′| = 1,

|µ− 1| = | − ωµg| = rg = | − ω′µ′g| = |µ′ − 1|.(8.10)

Hence µ and µ′ both lie on the circle of radius r about 0 and the circle of radius
|µ − 1| about 1. Since these circles intersect in the two distinct points µ and µ′,
they must intersect in exactly these two points, which must be nonreal and complex
conjugates. Therefore µ′ = µ. Hence µ′ is a root both of fω′(x) and fω(x), so by
what we have already shown, ω′ = ω.

Corollary 6. If r = 1 in Theorem 8.4, then µ must be one of the two (complex
conjugate ) primitive sixth roots of unity and ω = µ5−g. Conversely, if µ is a
primitive sixth root of unity and ω = µ5−g, then µ is a root of fω(x).

Proof. By (8.10), µ must lie on the intersection of the circles of radius r = 1 about
0 and 1. The intersection points of these circles are the two primitive sixth roots
of unity ζ and ζ. Since ζ2 − ζ + 1 = 0 and ζ3 = −1, we have ω = ζ−1

−ζg = ζ5−g. The
converse statement is clear.

Corollary 7. For |ω| = 1 define rω to be the minimal absolute value of a root of
fω(x) = −ωxg − x + 1. Then rω ≤ 1. Define ω(ρ) = e2πiρ. As ρ increases from 0
to π, rω(ρ) is monotonically increasing.

Proof. The product of the absolute values of the roots of fω(x) is 1, so rω ≤ 1.
We showed in Theorem 8.3 that the roots of fω(x) are simple, so by the implicit
function theorem, rω(ρ) is a continuous function of ρ. Therefore if rω(ρ) is not
monotone for ρ in [0, π], there exist ρ 6= ρ′ in (0, π) such that rω(ρ) = rω(ρ′). But
Theorem 8.4 shows this implies ω(ρ) = ω(ρ′) or ω(ρ) = ω(ρ′), which is impossible.
Hence rω(ρ) is monotone. Finally, if rω(ρ) is not increasing with ρ, it must be
decreasing, so rω(π) = r−1 would be less than rω(0) = r1. However, r1 is the unique
real root of f1(x) = −xg − x + 1 = 0 in the interval (0, 1). Hence if µ is a root of
f−1(x) = xg − x + 1 = 0 and |µ| < r1, then 1 = |µg − µ| ≤ |µ|g + |µ| < rg

1 + r1 = 1.
This contradiction completes the proof.

Corollary 8. Theorems 7.2 and 7.3 are true if g = 2 and h = c · h−1 for some
constant c.

Proof. When g = 2 and ω = −1 we have fω(x) = x2 − x + 1 = (x − ζ) · (x − ζ)
where ζ = 1+

√−3
2 is a primitive sixth root of 1. Thus rh = 0 if c = 0 and rh = 1

otherwise. For n ≥ g − 1 = 1, (8.7) gives

dh(B(n, g)) = − c

ζn+g(2ζ − 1)
− c

ζ
n+g

(2ζ − 1)
= c

ζn+g − ζ
n+g

√−3
(8.11)

and this is readily checked to lie in {0, c,−c}.
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Lemma 8.5. Suppose g > 2 or that g = 2 and h is not a constant multiple of h−1.
Write

h =
∑

χ∈(Z/v)dual

aχ χ(8.12)

for some constants aχ as in (4.2). Let C be the set of characters χ for which
aχ 6= 0. There is a character χ ∈ C such that 1 > rh = rχ(1) = rχ(1) < rχ′(1) for all
χ′ ∈ C − {χ, χ}, where rh and rχ(1) are defined in Definition 7.1. There is a root
θ of fχ(1)(x) such that |θ| = rχ(1), and |θ| < |µ| if µ 6∈ {θ, θ} is a root of fχ′(1)(x)
for some χ′ ∈ C. If χ′ ∈ C and θ is a root of fχ′(1)(x), then χ′ = χ. Let χ1 be the
trivial character of Z/v. Then rχ1 ≤ rχ < 1, with equality if and only if χ = χ1.

Proof. The product of the absolute values of the roots of the polynomial fχ(1)(x) =
−χ(1)xg − x + 1 is equal to 1. By Corollary 6, this polynomial has at most two
roots on the unit circle, and if such roots exist they are primitive sixth roots of
unity. Hence rχ(1) = min{|µ| : fχ(1)(µ) = 0} < 1 if g > 2 or if g = 2 and some root
of fχ(1)(x) is not a sixth root of unity. Thus rχ(1) < 1 unless g = 2 and fχ(1)(ζ) =
−χ(1)ζ2− ζ + 1 = 0 when ζ is a primitive sixth root of unity. Since ζ2 = 1− ζ, we
conclude rχ(1) < 1 unless g = 2 and χ(1) = −1. Since we have assumed h is not a
constant multiple of h−1 if g = 2, we find rh = min{rχ(1) : aχ(1) 6= 0} < 1.

By Theorem 8.4, the only way in which there can be characters χ, χ′ such that
fχ(1)(x) and fχ′(1)(x) have distincts roots µ and µ′, respectively, of the same ab-
solute value is for µ′ = µ 6= µ and χ′(1) = χ(1)−1. Since χ′(1) = χ(1)−1 implies
χ′ = χ−1, this implies the assertions in Lemma 8.5 concerning θ and µ.

The last statement in the lemma is that rχ1 ≤ rχ < 1, with equality if and only
if χ = χ1. This is clear from Corollary 7, since rχ = rχ.

Corollary 9. To complete the proof of Theorems 7.2 and 7.3 it will suffice to show
the following. Suppose g > 2 or that g = 2 and h is not a constant multiple of h−1.
Let χ and θ be as in Lemma 8.5, and assume θ 6= θ. Define A1 = aχ

θg·f ′χ(1)(θ) and

A2 = aχ

θ
g ·f ′

χ(1)(θ)
. It will suffice to show that if r > rh = |θ|, then there are effectively

computable positive constants c0 and c1 such that

|A1θ
−n + A2θ

−n| > c0r
−n(8.13)

for n > c1.

Proof. For large n, the dominant terms on the right-hand side of (8.7) arise from the
αi(ξ(1)) of smallest absolute value as ξ ranges over all characters of Z/n for which
aξ 6= 0. Lemma 8.5 shows the only roots which can contribute to the dominant
term are θ and θ. If θ = θ, then there is just one dominant term and we are done.
If θ 6= θ, then in view of (8.7), the inequality (8.13) will insure that the sum of the
terms coming from θ and θ dominates the rest of the terms and has the order of
growth required for Theorem 7.2. Theorem 7.3 then follows from Lemma 8.5.

To produce a lower bound of the form (8.13), we will use the following result
of Fel’dman [2] about linear forms in logarithms of algebraic numbers. (Stronger
results about linear forms in logarithms are available, but to keep the statement of
Theorem 7.2 simple we will leave it to the reader to consider the resulting refine-
ments.)
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Theorem 8.6. Suppose τ1, . . . , τm, β are distinct nonzero elements of the algebraic
number field K. Let ln(z) be a fixed branch of the complex logarithm of z. Suppose
δ > 0 and

0 < |b1 ln(τ1) + · · · bm ln(τm)− ln(β)| < exp(−δH)(8.14)

for some b1, . . . , bm ∈ Z, where H = max |bk|. Then H < λ(1 + ln C), where
C = height(β) and λ is an effectively computable constant independent of C and
H.

Lemma 8.7. Assume the notations of Corollary 9. The constant A1 is not zero,
and if |A2| 6= |A1|, then one can produce the required lower bound (8.13). Suppose
now that |A2| = |A1|. Choose a consant c0 so 1/2 > c0/|A1| > 0. Define τ1 = −1,
τ2 = θ/θ and β = A1/A2. Choose a branch of ln(z) so that ln(τ1) = ln(−1) = πi.
One can find effectively computable c1 > 0 and δ > 0 (depending on g) such that if
the inequality (8.13) does not hold for some n > c1, then

|b1 ln(τ1) + n ln(τ2)− ln(β)| < exp(− ln(r/r0)n) < exp(−δH)(8.15)

for some integer b1, where H = max(|b1|, |n|) ≥ n.

Proof. We have A1 6= 0 by the choice of θ in Corollary 9. If |A2| 6= |A1|, then

|A1θ
−n + A2θ

−n| ≥ c0|θ|−n > c0r
−n(8.16)

when c0 = ||A1| − |A2||, so we have a lower bound of the required form. Assume
now that |A1| = |A2|. If (8.13) does not hold, then∣∣∣∣1 +

A2

A1
(
θ

θ
)−n

∣∣∣∣ ≤ c0

|A1|
(

r

|θ|
)−n

.(8.17)

This is equivalent to the statement that

−β−1 · τn
2 = 1− t with |t| ≤ c0

|A1|
(

r

|θ|
)−n

.(8.18)

Since 0 < c0/|A1| < 1/2 by assumption and r > |θ|, we get |t| < 1/2 in (8.18).
Thus ∣∣∣∣∣

∞∑
m=1

−tm

m

∣∣∣∣∣ <

∞∑
m=1

|tm| = |t|
1− |t| < 2|t| ≤ 2

c0

|A1|
(

r

|θ|
)−n

≤
(

r

|θ|
)−n

.(8.19)

The left-hand side of (8.19) is the absolute value of the principal branch of the
complex logarithm at 1− t. We now take logs of the equality −β−1 · τn

2 = 1− t in
(8.18) and use the fact that we have chosen the branch ln of the complex logarithm
such that ln(−1) = πi. This and (8.19) show there is an integer b1 so

| − ln(β) + n ln(τ2) + b1 ln(−1)| ≤
∣∣∣∣∣
∞∑

m=1

−tm

m

∣∣∣∣∣ <

(
r

|θ|
)−n

= exp(− ln(r/|θ|)n).

(8.20)

Note that (8.20) can hold for at most one integer b1 when n is fixed, since the
right-hand side of (8.20) is less than 1. Thus to establish (8.15), we only have to
show how to specify constants c1, δ > 0 such that if n > c1 and (8.20) holds for
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some (unique) b1 ∈ Z, then − ln(r/|θ|)n < −δH , where H = max(|b1|, n). Now
(8.20) implies

|b1| < | ln(β)| + n| ln(τ2)|+ 1
π

.(8.21)

Thus if n > c1 = | ln(β)|+ 1, then

H = max(|b1|, n) < max(
1 + | ln(τ2)|

π
n, n)(8.22)

so we can let

δ =
ln(r/|θ|)

max(1+| ln(τ2)|
π , 1)

> 0.(8.23)

Corollary 10. To complete the proof of Theorems 7.2 and 7.3, it will suffice to
show that if θ is as in Corollary 9 and θ 6= θ, then θ/θ is not a root of unity.

Proof. We first observe that Theorem 8.6 gives an effectively computable upper
bound on the H ≥ n for which one can have an inequality of the form (8.15) for
some n > c1 in which the left-hand side of (8.15) is not equal to 0. Thus in view
of Corollary 9 and Lemma 8.7, to complete the proof of Theorem 7.2 we need only
show c1 can be increased in an effectively computable way so that the left side of
(8.15) cannot be identically 0 if n > c1. If the left side of (8.15) equals 0, we have
on exponentiating that (

θ

θ

)2n

=
(

A1

A2

)2

.(8.24)

Assume θ/θ is not a root of unity. If (8.24) holds, then A1/A2 = ±(θ/θ)n lies in
the number field L generated over Q by θ and θ, and A1/A2 cannot be a root of
unity. One can determine effectively a finite set S of finite places of L such that
A1/A2 is an S-unit of L. One can furthermore determine effectively a finite set
of generators for the group US of S-units of L. The torsion subgroup µL of US

is the group of roots of unity in L, and US/µL is a free finitely generated abelian
group. Since A1/A2 is not a root of unity, it defines a nonzero element [A1/A2] of
US/µL. By expressing [A1/A2] in terms of a basis over Z for US/µL we can bound
the even integers 2n > 0 for which [A1/A2] has a 2nth root in US/µL . This gives
an effective way to increase c1 so that n > c1 implies (8.24) cannot hold, provided
we know that θ/θ is not a root of unity.

In view of Corollary 10, the following result completes the proof of Theorems 7.2
and 7.3, since θ in Corollary 9 is not a root of unity.

Theorem 8.8. Suppose g > 1, ω is a root of unity, α is a root of fω(x) = −ωxg −
x + 1, and α = ζα for some nontrivial root of unity ζ. Then α is a primitive sixth
root of unity and ζ = α−2.

Lemma 8.9. Under the hypotheses of Theorem 8.8,

α =
ζgω − ω

ζgω − ζω
(8.25)

where ζgω − ω 6= 0 6= ζgω − ζω.
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Proof. Since ζα = α is a root of fω(x) = −ωxg − x + 1, we have

−ωαg − α + 1 = 0 = −ω(αζ)g − αζ + 1.

Hence

−ωαg − α = −ωαgζg − αζ.(8.26)

Therefore

αg · (−ω + ωζg) = α · (1− ζ).(8.27)

Since fω(0) 6= 0, we see that α 6= 0. Hence since ζ 6= 1, (8.27) implies αg · (−ω +
ωζg) 6= 0. Therefore ζgω − ω 6= 0, and (8.27) gives

−ωαg−1 = (1− ζ)/(1− ζg ω

ω
).(8.28)

Hence

0 = −ωαg − α + 1
= α · (−ωαg−1 − 1) + 1

= α · ((1 − ζ)/(1− ζg ω

ω
)− 1) + 1

= α · (ζg ω

ω
− ζ)/(1− ζg ω

ω
) + 1.(8.29)

This implies 0 6= ζgω − ζω, and we now solve (8.29) for α to get (8.25).

Corollary 11. Suppose F = C is the field of complex numbers. Let ζ1/2 be one of
the two square roots of ζ, so that ζ1/2 is a root of unity. Then

β = ζ1/2α =
ζg/2ω − ζ−g/2ω

ζ(g−1)/2ω − ζ−(g−1)/2ω
(8.30)

is a totally real algebraic integer.

Proof. The second equality in (8.30) follows directly from (8.25). It’s clear that β
is an algebraic integer since α is. Because complex conjugation sends ζ1/2 to ζ−1/2

and ω to ω we see from (8.30) that β is real. Because β lies in the abelian extension
Q(ζ, ω) of Q, this implies β is totally real.

Lemma 8.10. Suppose τ is a root of fω′(x) = −ω′xg − x + 1 and ω′ is a root of
unity. If g > 2, then 0 < |τ | <

√
2. If g = 2, then 0 < |τ | ≤ 1+

√
5

2 , with equality
only if ω′ = 1 and τ = −1−√5

2 .

Proof. Since fω′(τ) = −ω′τg − τ + 1 = 0, fω′(0) 6= 0 and |ω′| = 1, we must have
|τ | > 0 and |τ |g ≤ |τ | + 1. Consider the function h(r) = rg − r − 1. Because
h′(r) = grg−1 − 1 > 0 for r > 1, we see h(r) is an increasing function for r > 1.
Now h(

√
2) = (

√
2)g − √

2 − 1 ≥ (
√

2)3 − √
2 − 1 > 0 if g ≥ 3, and h(1+

√
5

2 ) = 0
if g = 2. Therefore since h(|τ |) ≤ 0, we conclude that |τ | <

√
2 if g ≥ 3, and

|τ | ≤ 1+
√

5
2 if g = 2. Suppose in what follows that g = 2 and |τ | = 1+

√
5

2 . Then
|τ |2 = |τ |+ 1 and |τ |2 = | − ω′τg| = |τ − 1|. Thus |τ |+ 1 = |τ − 1|, which forces τ

to be real and τ ≤ 0. Hence τ = − 1+
√

5
2 and ω′ = (1− τ)/τ2 = 1.

Lemma 8.11. Define r0 = 1+
√

5
2 and z(x) = (x2 − 3x + 1) = (x − r2

0)(x − r−2
0 ).

For any ε > 0, there is an integer a > 0 such that r(x) = (x − 2) · (x − 1)a · z(x)a

satisfies |r(x)| < 1 for ε < x ≤ r2
0.
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Proof. Define t(x) = (x−1)(x2−3x+1) = x3−4x2+4x−1. By freshman calculus,
−1 < t(x) ≤ 5/27 if 0 < x ≤ r2

0 except when x = 2, where t(2) = −1. Since x − 2
is bounded on [ε, r2

0 ] and vanishes at x = 2, the lemma is clear from this.

Lemma 8.12. Let β be as in Corollary 11. Then β = ±1.

Proof. From (8.30) we see that β2 = ζ · α2 is an algebraic integer because ζ and
α are. Corollary 11 shows that β2 is totally real and totally positive because β
is totally real and nonzero. Suppose σ is an automorphism of C over Q. Then
σ(β2) = σ(ζ ·α2) = σ(ζ) · σ(α)2, where σ(ζ) is a root of unity and σ(α) is a root of
fσ(ω)(x). Here σ(ω) is a root of unity because ω is. Hence Lemma 8.10 implies

0 < |σ(β2)| = |σ(α)|2 < 2 if g > 2(8.31)

and

0 < |σ(β2)| = |σ(α)|2 ≤ r2
0 if g = 2.(8.32)

Since β2 is totally positive, (8.31) shows that if g > 2, β2−1 is an algebraic integer
having all of its conjugates in (−1, 1). The norm of β2 − 1 is the product of these
conjugates and is a rational integer. Hence this norm must be 0, so β2 = 1 and
β = ±1.

For the rest of the proof we suppose g = 2. Since β2 is totally positive, (8.32)
implies β2 is an algebraic integer having all of its conjugates in [ε, r2

0] for some
ε > 0. Let r(x) = (x− 2) · (x− 1)a · z(x)a be as in Lemma 8.11. We conclude now
from Lemma 8.11 that r(β2) is an algebraic integer having all of its conjugates in
the real interval (0, 1). The norm of r(β2) must then be a rational integer of norm
less than 1 in absolute value, so in fact r(β2) = 0. Since r(x) = (x − 2) · (x− 1)a ·
(x− r2

0)
a · (x− r−2

0 )a, we conclude that β2 ∈ {1, 2, r2
0, r

−2
0 }.

If β2 = 1, then β = ±1 and we are done. Suppose β2 = 2. Then β = ζ1/2α =
±√2, and all conjugates of α have absolute value

√
2. Since α is a root of −ωx2 −

x + 1 and ω is a root of unity, we find that | − ωα2| = 2 equals |1 − α|. Thus α

lies on the intersection of the circles |α| =
√

2 and |1 − α| = 2, from which one
finds α = (1 ± √−7)/2. Then ω = (1 − α)/α2 is a root of unity in Q(

√−7), so
ω = ±1. But then α = (1±√−7)/2 is not a root of −ωx2 − x + 1, so we conclude
β2 = 2 is impossible. If β2 = r2

0 , then β = ζ1/2α = ±r0, so α = ±ζ−1/2r0 and
|α| = r0. However, it was shown in Lemma 8.10 that |α| = r0 is possible only if
α = −r0 and ω = 1. Then ζ = α/α = r0/r0 = 1, contradicting our assumption
that ζ is a nontrivial root of unity. Suppose finally that β2 = r−2

0 . We find as
above that |α| = r−1

0 . The other root α′ of fω(x) = −ωx2 − x + 1 must have
|α′| = r0. Lemma 8.10 now shows α′ = −r0 and ω = 1, so α = r−1

0 . However,
then ζ = α/α = 1, contrary to hypothesis. The contradiction shows β2 = r−2

0 is
impossible and completes the proof.

Proof of Theorem 8.8. Combining Corollary 11 and Lemma 8.12 shows α = ζ−1/2β
= ±ζ−1/2. Hence α is a root of unity, so Theorem 8.8 now follows from Corollary
6.

9. Pale-Gray codes

If we allow a slight relaxation of our Gray code requirements, we can still obtain
a minimal change listing of B(n, g) for all n ≥ 0, g ≥ 1: allow successive sets on the
list to differ by the adjunction and/or deletion of an element. Call such a listing
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a pale-Gray code. For example, for the set B(4, 3), no Gray code can exist since
d(4, 3) = −2. However a pale-Gray code is

[∅, {1}, {2}, {3}, {4}, {1, 4}].
Call two sets adjacent if they differ by the adjunction and/or deletion of an element.

For n ≥ 0 and g ≥ 1, define the list Ln,g recursively as follows:
(a) L0,g = [∅].
(b) For 1 ≤ n ≤ g, Ln,g = [{n}, Ln−1,g].
(c) For g + 1 ≤ n < 2g, Ln,g = [{n, n− g}, n⊗ Ln−g−1,g, Ln−1,g].
(d) For n ≥ 2g, Ln,g = [{n, n− g} ⊗ Ln−2g,g, n⊗ Ln−g−1,g, Ln−1,g].
It follows from one or two applications of (3.1) that Ln,g, so defined, is a listing

of the elements of B(n, g). We now show that it is a pale-Gray code.

Theorem 9.1. For n ≥ 0 and g ≥ 1, the list Ln,g is a pale-Gray code listing of
B(n, g). Furthermore, if n > 0, the first member of Ln,g is the set Gn,g, and its
last member is the set Gn−1,g, where Gn,g = {n, n− g, n− 2g, . . .}, i.e.,

Gn,g = {n− jg : 0 ≤ j ≤ b(n− 1)/gc}.
Proof. Clearly the theorem holds for n = 0. Let n > 0 and assume the theorem
holds for all B(m, g) with g ≥ 1 and 0 ≤ m < n.

If 1 ≤ n ≤ g, Ln,g is constructed as in step (b). If n ≤ 2, the theorem follows
since step (b) gives L1,g = [{1}, ∅] and L2,g = [{2}, ∅, {1}]. Otherwise, for 2 <

n ≤ g, by induction, Ln−1,g is a pale-Gray code for B(n − 1, g), beginning with
Gn−2,g = {n− 2} and ending with Gn−1,g = {n− 1}. Since Gn,g = {n} is adjacent
to {n− 2}, the theorem follows.

If g + 1 ≤ n < 2g, the list Ln,g is constructed as in (c). Note that g 6= 1 since
no n satisfies 2 ≤ n < 2. By induction, Ln−g−1,g and Ln−1,g are pale-Gray codes
which start and end with the sets given by the theorem. Then if g + 1 ≤ n < g + 2,
the theorem follows, since (c) gives

Lg+1,g = [{g + 1, 1}, (g + 1)⊗ L0,g, Lg,g]
= [{g + 1, 1}, {g + 1}, {g − 1}, . . . , {g}].

Lg+2,g = [{g + 2, 2}, (g + 2)⊗ L1,g, Lg+1,g]
= [{g + 2, 2}, {g + 2, 1}, {g + 2}, {g}, . . . , {g + 1, 1}].

Otherwise, for g + 2 < n < 2g, list n⊗Ln−g−1, g begins with {n, n− g− 2}, which
is adjacent to {n, n− g} = Gn,g, and ends with {n, n− g − 2} which is adjacent
to {n− 2, n− g− 2} = Gn−2,g, the first element of Ln−1,g. Since Ln−1,g ends with
Gn−1,g, the theorem follows.

For n ≥ 2g, the list Ln,g is constructed by step (d) and by induction, lists
Ln−2g,g, Ln−g−1,g and Ln−1,g are pale-Gray codes which begin and end with the
sets specified by the theorem. Specifically,

{n, n− g} ⊗ Ln−2g,g = [{n, n− g} ⊗Gn−2g,g, . . . , {n, n− g} ⊗Gn−2g−1,g]
= [Gn,g, . . . , {n, n− g} ⊗Gn−2g−1,g].

(Note that if n = 2g, this list contains only one set, namely {n, n− g}.) Similarly,

n⊗ Ln−g−1,g = [n⊗Gn−g−1,g, . . . , n⊗Gn−g−2,g]
= [{n, n− g − 1} ⊗Gn−2g−1,g , . . . , n⊗Gn−g−2,g]
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{1, 4, 7, 10} {3, 10} {6} {4, 7}
{4, 7, 10} {5, 10} {1, 6} {1, 4, 7}
{2, 7, 10} {1, 5, 10} {1, 4} {1, 4, 9}
{7, 10} {2, 5, 10} {4} {4, 9}
{1, 7, 10} {2, 5, 8} {2} {2, 9}
{3, 7, 10} {5, 8} {} {9}
{3, 6, 10} {1, 5, 8} {1} {1, 9}
{2, 6, 10} {1, 4, 8} {3} {3, 9}
{6, 10} {4, 8} {5} {5, 9}
{1, 6, 10} {2, 8} {1, 5} {1, 5, 9}
{1, 4, 10} {8} {2, 5} {2, 5, 9}
{4, 10} {1, 8} {2, 7} {2, 6, 9}
{2, 10} {3, 8} {7} {6, 9}
{10} {3, 6} {1, 7} {1, 6, 9}
{1, 10} {2, 6} {3, 7} {3, 6, 9}

Figure 1. The pale-Gray code listing of L10,3 resulting from the
construction of Theorem 9.1.

and

Ln−1,g = [Gn−2,g, . . . , Gn−1,g]
= [(n− 2)⊗Gn−g−2,g, . . . , Gn−1,g].

The theorem follows by observing the adjacencies between successive composite
lists in step (d).

As an example, Figure 1 shows the pale-Gray code listing of L10,3 resulting from
the construction of Theorem 9.1.

10. Blockfree words

Consider a word w over an alphabet A of A letters. We say that w is k-blockfree
if w contains no block of k or more consecutive identical letters. If A, k, and n
are fixed, we ask if there exists a Gray code listing of all of the k-blockfree n-letter
words over A , where the Gray code condition means that successive words differ
in only a single letter.

It turns out that the cases A = 2 and A ≥ 3 are quite different. Consider first
A = 2, so we are trying to make a list of all strings of n bits that have no blocks of
k or more consecutive 0’s or 1’s, arranged so that consecutive elements of the list
differ in a single bit position. For this to be possible it is obviously necessary that
the number of such blockfree words that have an even number of 1’s differs by at
most 1 from the number of such blockfree words that have an odd number of 1’s.
We will compute this excess as a function of n and k:∑

h

(−1)hf(n, h, k),(10.1)

where f(n, h, k) is the number of n-bit strings that have exactly h 1’s, and no block
of k or more consecutive 0’s or 1’s. Let F (n, h, k) be the set counted by f(n, h, k),
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let f0(n, h, k) be the number of bit strings in F (n, h, k) which start with ‘0’ and let
f1(n, h, k) be the number which start with ‘1’. Since f1(n, h, k) = f0(n, n− h, k),∑

h

(−1)hf(n, h, k) =
{

2
∑

h(−1)hf1(n, h, k) if n is even,
0 otherwise.

We focus on the cases when n is even and show that there are pairs (n, k) for which∑
h

(−1)hf1(n, h, k)

exceeds 1 and hence also for (10.1).
Let w denote a word in F (n, h, k) that begins with a 1. Let the sizes of the

consecutive blocks of 1’s and 0’s be

a1, b1, a2, b2, . . . , ar, br

in which r ≥ 1 and
• For all i = 1, . . . , r: 1 ≤ ai ≤ k − 1;
• For all i = 1, . . . , r − 1: 1 ≤ bi ≤ k − 1;
• 0 ≤ br ≤ k − 1;
• a1 + · · ·+ ar = h; b1 + · · ·+ br = n− h.
The number of such pairs of compositions of h and n−h is evidently (“[xm]{. . . }”

is the coefficient of xm in “. . . ”)

[xhyn−h](x + x2 + · · ·+ xk−1)r(y + y2 + · · ·+ yk−1)r−1(1 + y + y2 + . . . yk−1)

= [xhyn−h]xryr−1 (1− xk−1)r(1 − yk−1)r−1(1 − yk)
(1− x)r(1− y)r−1(1− y)

,

which is to say that∑
n,h

f1(n, h, k)xhyn−h =
∑
r≥1

xryr−1 (1− xk−1)r(1− yk−1)r−1(1− yk)
(1− x)r(1− y)r

=
x(1 − yk)(1 − xk−1)(1− yk−1)

(1− x)(1 − y)− xy(1− xk−1)(1− yk−1)
.

Next, replace x by xy throughout, and then set x := −1. This yields∑
n

{∑
h

(−1)hf1(n, h, k)

}
yn

=

{
−y(1− y2k−2)/(1 + yk) if k is even,
−y(1− yk)(1 − yk−1)2/(1− 2yk+1 + y2k) if k is odd

which means that the coefficient of yn in the series on the right is the excess of the
number of words with an even number of 1’s over the number with an odd number
of 1’s in our class of k-blockfree bit strings of length n which start with a ‘1’.

If we now double these generating functions, to take account of the excess among
words that start with a ‘0’, we see that when n is even, a Gray code is possible for
n-bit k-blockfree strings, if k is even, only if n is neither ≡ 1 mod k nor ≡ −1 mod
2k, and if k is odd, only if the coefficient of yn in the series

−2y
(1− yk)(1 − yk−1)2

1− 2yk+1 + y2k
(10.2)
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vanishes. Since n is even, a Gray code is not precluded for k even. However, in
tabulations for n = 2, 4, . . . , 98, and k = 3, 5, 7, 9, we find that for n ≥ k in this
range, the coefficient of yn in (10.2) vanishes only for (n, k) in the set

{(5, 8), (7, 10), (7, 11), (7, 18), (7, 28), (9, 12), (9, 14), (9, 16),

(9, 22), (9, 24), (9, 26), (9, 32), (9, 34), (9, 42), (9, 54)}.
In fact, it appears from more extensive tabulation, that for each odd k, the coeffi-
cient of yn in (10.2) never vanishes once n becomes large enough.

11. Alphabets of more than two letters

If A = {a, b, c}, it is not possible to list the 2-blockfree words of length 3 over
A. For example, both bca and acb must be listed between aca and bcb, the only
two words to which they are adjacent. However, for alphabets with more than two
letters we do have the following.

Theorem 11.1. If k > 2 and |A| ≥ 3 or if k = 2 and |A| ≥ 4, then the k-blockfree
words of length n over A can be listed so that successive words differ only in a single
letter.

Proof. If n = 1, a listing of the elements of A in any order satisfies the required
property. For n > 1, assume inductively that there is a Gray code listing

L(n− 1) = x1, x2, . . . , xt

of the k-blockfree words of length n− 1 over A.
Before constructing L(n), we define from L(n − 1) a sequence A1, . . . ,At of

subsets of A and a sequence y0, y1, . . . yt of letters in A as follows:
For i = 1, . . . , t, if word xi of L(n−1) ends with k−1 copies of the letter z ∈ A,

then let Ai = A− {z}; otherwise, let Ai = A.
Note that if k > 2, then since xi and xi+1 differ in only one letter, Ai and Ai+1 have
at least |A| − 1 ≥ 2 elements in common. If k = 2, then |Ai ∩Ai+1| ≥ |A| − 2 ≥ 2.

Now choose y0 ∈ A1 arbitrarily and for i = 1, . . . , t, successively choose

yi ∈ (Ai ∩ Ai+1)− {yi−1}.
Since |Ai ∩ Ai+1| ≥ 2, there is at least one choice for each yi.

Now, for each i = 1, . . . , t, let Mi be a list of the words

{xiv|v ∈ Ai}
starting at xiyi−1 and ending with xiyi. The concatenation of the lists Mi gives
the required list L(n):

L(n) = [M1,M2, . . . ,Mt].

12. Remarks

We mention some related work for blockfree words.
In [5], Guibas and Odlyzko give a generating function for the number of words

over an alphabet A which do not contain any of a finite given set of strings. This
can be applied to obtain a generating function for the number of k-blockfree n-letter
words over A by choosing the set of patterns to be {ak|a ∈ A}, from which we must
then compute the parity difference to get the result of Section 10.
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In [7], Squire studies the existence of Gray codes for n-letter words over A which
do not contain a given string. For the case of k-blockfree words, Squire’s results do
not apply since we are dealing with a set of several forbidden strings. However, the
special structure of these strings allows us to construct a simple Gray code.

It is interesting to note that there are cases where, according to [7], Gray codes
do not exist if the forbidden string is ak for some a ∈ A, k > 1, but, according to
our results, do exist when the set of forbidden strings is {ak|a ∈ A}.
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