Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The nilpotence height of $P^{s}_{t}$ for odd primes


Author: Ismet Karaca
Journal: Trans. Amer. Math. Soc. 351 (1999), 547-558
MSC (1991): Primary 55S10, 55S05; Secondary 57T05
DOI: https://doi.org/10.1090/S0002-9947-99-01906-6
MathSciNet review: 1407704
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: K. G. Monks has recently shown that the element $P^{s}_{t}$ has nilpotence height $2[\frac{s}{t}] + 2$ in the mod $2$ Steenrod algebra. Here the method and result are generalized to show that for an odd prime $p$ the element $P^{s}_{t}$ has nilpotence height $p[\frac{s}{t}] + p$ in the mod $p $ Steenrod algebra.


References [Enhancements On Off] (What's this?)

  • [1] J.F. Adams and H.R. Margolis, Modules Over the Steenrod Algebra, Topology 10 (1971), 271-282. MR 45:3520
  • [2] J.F. Adams and H.R. Margolis, Sub-Hopf-Algebra of the Steenrod Algebra, Proc. Camb. Phil. Soc. 76 (1974), 45-52. MR 49:6238
  • [3] D.W. Anderson and D.M. Davis, A Vanishing Theorem in Homological Algebra, Comment. Math. Helvet. 48 (1973), 318-327. MR 48:12526
  • [4] D. Arnon, Monomial Bases in the Steenrod Algebra, J. Pure and Applied Algebra 96 (1994), 215-223. MR 95i:55015
  • [5] D.P. Carlisle and R.M.W. Wood, On an Ideal Conjecture in the Steenrod Algebra, preprint (1994).
  • [6] D.M. Davis, The Antiautomorphism of the Steenrod Algebra, Proc. Amer. Math. Soc. 44 (1974), 235-236. MR 48:7276
  • [7] D.M. Davis, On the height of $Sq^{2^{n}}$, preprint (1985).
  • [8] A.M. Gallant, Excess and Conjugation in the Steenrod Algebra, Proc. Amer. Math. Soc. 76 (1979), 161-166. MR 81a:55029
  • [9] B. Gray, Homotopy Theory, Academic Press (1975). MR 53:6528
  • [10] L. Kristensen, On a Cartan Formula for Secondary Cohomology Operations, Math. Scand. 16 (1965), 97-115. MR 33:4926
  • [11] H.R. Margolis, Spectra and the Steenrod Algebra, vol 29 North Holland Math.Library (1983). MR 86j:55001
  • [12] J. Milnor, The Steenrod Algebra and Its Dual, Ann. of Math. 67 (1958), 150-171. MR 20:6092
  • [13] K.G. Monks, Nilpotence in the Steenrod Algebra, Bol.Soc.Mat.Mexicana 37 (1992), 401-416. MR 95j:55032
  • [14] K.G. Monks, The Nilpotence Height of $P^{s}_{t}$, Proc. Amer. Math. Soc. 124 (1966), 1297-1303. MR 96g:55023
  • [15] J.H. Silverman, Conjugation and Excess in the Steenrod Algebra, Proc. Amer. Math. Soc. 119 (1993), 657-661. MR 93k:55020
  • [16] J.H. Silverman, Hit Monomials and the Canonical Antiautomorphism of the Steenrod Algebra, Proc. Amer. Math. Soc. 123 (1995), 627-637. MR 95c:55023
  • [17] P. D. Straffin, Jr., Identities for Conjugation in the Steenrod Algebra, Proc. Amer. Math. Soc. 49 (1975), 253-255. MR 52:1693
  • [18] G.Walker and R.M.W. Wood, The Nilpotence Height of $Sq^{2^{n}}$, Proc. Amer. Math. Soc. 124 (1966), 1291-1295. MR 96g:55024
  • [19] G.Walker and R.M.W. Wood, The Nilpotence Height of $P^{p^{n}}$, preprint (1995).
  • [20] R.M.W. Wood, A Note on Bases and Relations in the Steenrod Algebra, Bull. London Math. Soc. 27 (1995), 380-386. MR 96e:55013
  • [21] R.M.W. Wood, Differential Operators and the Steenrod Algebra, preprint (1995).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 55S10, 55S05, 57T05

Retrieve articles in all journals with MSC (1991): 55S10, 55S05, 57T05


Additional Information

Ismet Karaca
Affiliation: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
Address at time of publication: Department of Mathematics, Ege University, Bornova, Izmir 35100, Turkey
Email: karaca@fenfak.ege.edu.tr

DOI: https://doi.org/10.1090/S0002-9947-99-01906-6
Received by editor(s): May 16, 1996
Additional Notes: I would like to thank sincerely my PhD. adviser Professor Donald M. Davis for every piece of advice and guidance. This paper would not exist without his help.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society