Projective structures

with discrete holonomy representations

Authors:
Hiroshige Shiga and Harumi Tanigawa

Journal:
Trans. Amer. Math. Soc. **351** (1999), 813-823

MSC (1991):
Primary 32G15; Secondary 30F10

DOI:
https://doi.org/10.1090/S0002-9947-99-02043-7

MathSciNet review:
1443890

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the set of projective structures on a compact Riemann surface whose holonomy representations are discrete. We will show that each component of the interior of is holomorphically equivalent to a complex submanifold of the product of Teichmüller spaces and the holonomy representation of every projective structure in the interior of is a quasifuchsian group.

**[B]**L. Bers,*Holomorphic families of isomorphisms of Möbius groups*, J. Math. Kyoto Univ.**26**(1986), 73-76. MR**87j:32067****[EKK]**C. Earle, I. Kra and S. Krushkal,*Holomorphic Motions and Teichmüller spaces*, Trans. Amer. Math. Soc.**343**(1994), 927-948. MR**94h:32035****[EM]**C. Earle and C. McMullen,*Quasiconformal isotopes*, Holomorphic Functions and Moduli II, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris and Tokyo, 1988, pp. 143-154. MR**89c:30002****[G1]**W. Goldman,*The symplectic nature of fundamental groups of surfaces*, Advances in Math.**54**(1984), 200-225. MR**86i:32042****[G2]**-,*Projective structures with Fuchsian holonomy*, J. Diff. Geom**25**(1987), 297-326. MR**88i:57006****[H]**D. Hejhal,*Monodromy groups and linearly polymorphic functions*, Acta Math.**135**(1975), 1-55. MR**57:3380****[JM]**D. Johnson and J. Millson,*Deformation spaces associated to compact hyperbolic manifolds*, Discrete Groups and Analysis, Papers in honor of G. D. Mostow on his 60-th birthday, Progress in Mathematics, vol. 67, Birkhäuser, pp. 48-106. MR**88j:22010****[Ko]**S. Kobayashi,*Hyperbolic Manifolds and Holomorphic mappings*, Marcel Dekker Inc., New York, 1970. MR**43:3503****[Kr1]**I. Kra,*A generalization of a theorem of Poincaré*, Proc. Amer. Math. Soc.**27**(1971), 299- 302. MR**46:347****[Kr2]**-,*Deformations of Fuchsian groups*, Duke Math. J.**36**(1969), 537-546. MR**42:491****[Kr3]**-,*Deformations of Fuchsian groups II*, Duke Math. J.**38**(1971). MR**44:2951****[L]**O. Lehto,*Univalent functions and Teichmüller spaces*, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris and Tokyo, 1985. MR**88f:30073****[M]**B. Maskit,*On a class of Kleinian groups*, Ann. Acad. Sci. Fenn. Ser. A**442**(1969), 1-8. MR**40:5857****[Sh]**H. Shiga,*Projective structures on Riemann surfaces and Kleinian groups*, J. Math. Kyoto Univ.**27**(1987), 433-438. MR**88k:30056****[Sl]**Z. Slodkowski,*Holomorphic motions and polynomial hulls*, Proc. Amer. Math. Soc.**111**(1991), 347-355. MR**91f:58078****[Su]**D. Sullivan,*On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions*, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Annals of Math. Studies 97, Princeton, 1981. MR**83f:58032****[T1]**H. Tanigawa,*Grafting, harmonic maps and projective structures on surfaces*, J. Differential Geometry**47**(1997), 399-419. CMP**98:11****[T2]**-,*Divergence of projective structures and lengths of measured laminations*, (preprint).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
32G15,
30F10

Retrieve articles in all journals with MSC (1991): 32G15, 30F10

Additional Information

**Hiroshige Shiga**

Affiliation:
Department of Mathematics, Tokyo Institute of Technology, Tokyo 152 Japan

Email:
shiga@math.titech.ac.jp

**Harumi Tanigawa**

Affiliation:
Graduate School of Polymathematics, Nagoya University, Nagoya 464-01 Japan

Email:
harumi@math.nagoya-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9947-99-02043-7

Additional Notes:
Research at MSRI is supported by NSF grant #DMS–9022140

Article copyright:
© Copyright 1999
American Mathematical Society