Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Global character formulae
for compact Lie groups

Authors: A. H. Dooley and N. J. Wildberger
Journal: Trans. Amer. Math. Soc. 351 (1999), 477-495
MSC (1991): Primary 22E30; Secondary 43A75
MathSciNet review: 1638234
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the concept of a modulator, which leads to a family of character formulae, each generalizing the Kirillov formula. For a suitable choice of modulator, this enables one to understand the Plancherel measure of a compact Lie group as arising from a partition of the identity on the dual of its Lie algebra.

References [Enhancements On Off] (What's this?)

  • 1. Nicole Berline and Michèle Vergne, Fourier transforms of orbits of the coadjoint representation, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 53–67. MR 733806
  • 2. Ronald R. Coifman and Guido Weiss, Transference methods in analysis, American Mathematical Society, Providence, R.I., 1976. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31. MR 0481928
  • 3. A. H. Dooley, J. Repka, and N. J. Wildberger, Sums of adjoint orbits, Linear and Multilinear Algebra 36 (1993), no. 2, 79–101. MR 1308911, 10.1080/03081089308818278
  • 4. A. Kh. Duli and N. Dzh. Vildberger, Harmonic analysis and global exponential mapping for compact Lie groups, Funktsional. Anal. i Prilozhen. 27 (1993), no. 1, 25–32 (Russian); English transl., Funct. Anal. Appl. 27 (1993), no. 1, 21–27. MR 1225907, 10.1007/BF01768664
  • 5. A. H. Dooley and F. Ricci, Characterisation of 𝐺-invariant Fourier algebras, Boll. Un. Mat. Ital. A (7) 9 (1995), no. 1, 37–45 (English, with Italian summary). MR 1324602
  • 6. Michel Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 265–288 (French, with English summary). MR 0444841
  • 7. Fulvio Ricci and Giancarlo Travaglini, 𝐿^{𝑝}-𝐿^{𝑞} estimates for orbital measures and Radon transforms on compact Lie groups and Lie algebras, J. Funct. Anal. 129 (1995), no. 1, 132–147. MR 1322645, 10.1006/jfan.1995.1045
  • 8. Nolan R. Wallach, Symplectic geometry and Fourier analysis, Math Sci Press, Brookline, Mass., 1977. With an appendix on quantum mechanics by Robert Hermann; Lie Groups: History, Frontiers and Applications, Vol. V. MR 0488148
  • 9. N. J. Wildberger, Hypergroups and harmonic analysis, Miniconference on probability and analysis (Sydney, 1991) Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 29, Austral. Nat. Univ., Canberra, 1992, pp. 238–253. MR 1188901

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 22E30, 43A75

Retrieve articles in all journals with MSC (1991): 22E30, 43A75

Additional Information

A. H. Dooley
Affiliation: School of Mathematics, The University of New South Wales, Sydney 2052, Australia

N. J. Wildberger
Affiliation: School of Mathematics, The University of New South Wales, Sydney 2052, Australia

Received by editor(s): April 30, 1995
Article copyright: © Copyright 1999 American Mathematical Society