Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the diophantine equation
$(x^3-1)/(x-1)=(y^n-1)/(y-1)$


Author: Maohua Le
Journal: Trans. Amer. Math. Soc. 351 (1999), 1063-1074
MSC (1991): Primary 11D61, 11J86
DOI: https://doi.org/10.1090/S0002-9947-99-02013-9
MathSciNet review: 1443198
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that the equation $(x^3-1)/(x-1)=$ $(y^n-1)/(y-1)$, $x,y,n\in\mathbb{N}$, $x>1$, $y>1$, $n>3$, has only the solutions $(x,y,n)=(5,2,5)$ and $(90,2,13)$ with $y$ is a prime power. The proof depends on some new results concerning the upper bounds for the number of solutions of the generalized Ramanujan-Nagell equations.


References [Enhancements On Off] (What's this?)

  • [1] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264. MR 22:10951
  • [2] R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1451-1452. MR 22:10950
  • [3] V. I. Baulin, On an indeterminate equation of the third degree with least positive discriminant, Tul'sk Gos. Ped. Inst. Ucen. Zap. Fiz. Mat. Nauk Vyp. 7 (1960), 138-170. (in Russian) MR 33:7298
  • [4] R. Goormaghtigh, L'intermédiaire des Mathématiciens, 24 (1917), 88.
  • [5] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981. MR 83k:10002
  • [6] M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory, 55 (1995), 285-321. MR 96h:11073
  • [7] M.-H. Le, The divisibility of the class number for a class of imaginary quadratic fields, Kexue Tongbao, 32 (1987), 724-727. (in Chinese) CMP 20:01
  • [8] M.-H. Le, The diophantine equation $D_1x^2+D_2=2^{n+2}$, Acta Arith., 64 (1993), 29-41. MR 94:11030
  • [9] M.-H. Le, A note on the generalized Ramanujan-Nagell equation, J. Number Theory, 50 (1995), 193-201. MR 96f:11051
  • [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983. MR 86c:11106
  • [11] T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal., (4) 16, no. 2, 38pp. (1955). MR 17:13b
  • [12] T. Nagell, The diophantine equation $x^2+7=2^n$, Arkiv. Mat., 4 (1960), 185-187.
  • [13] R. Ratat, L'Intermediaire des Mathématiciens, 23 (1916), 150.
  • [14] T. N. Shorey, Some exponential diophantine equations, in Number Theory and Related Topics, pp. 217-229, Bombay, 1989. MR 98d:11038

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11D61, 11J86

Retrieve articles in all journals with MSC (1991): 11D61, 11J86


Additional Information

Maohua Le
Affiliation: Department of Mathematics, Zhanjiang Teachers College, Postal Code 524048, Zhanjiang, Guangdong, P. R. China

DOI: https://doi.org/10.1090/S0002-9947-99-02013-9
Additional Notes: Supported by the National Natural Science Foundation of China and the Guangdong Provincial Natural Science Foundation
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society