Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On graphs with a metric end space


Author: Kerstin Waas
Journal: Trans. Amer. Math. Soc. 351 (1999), 1043-1062
MSC (1991): Primary 05C10
DOI: https://doi.org/10.1090/S0002-9947-99-02255-2
MathSciNet review: 1487635
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: R. Diestel conjectured that an infinite graph contains a topologically end-faithful forest if and only if its end space is metrizable. We prove this conjecture for uniform end spaces.


References [Enhancements On Off] (What's this?)

  • 1. J.-M. Brochet and R. Diestel, Normal Tree Orders for Infinite Graphs. Transactions of the American Mathematical Society, Vol. 345, No. 2, pp. 871-895, 1994. MR 95a:05024
  • 2. R. Diestel. The End Structure of a Graph: Recent Results and Open Problems. Discrete Mathematics Vol. 100, pp. 313-327, 1992. MR 93g:05038
  • 3. R. Diestel, On Spanning Trees and $k$-connectedness in Infinite Graphs. Journal of Combinatorial Theory, Series B 56, 1992. MR 93i:05047
  • 4. R. Halin, Über unendliche Wege in Graphen. Mathematische Annalen 157, 1964. MR 30:578
  • 5. R. Halin, Simplicial decompositions in infinite graphs. Advances in Graph Theory (B. Bollobás, Ed.), Annals of Discrete Mathematics 3, North-Holland Publ. Co., Amsterdam / London 1978. MR 80a:05162
  • 6. R. Halin, Graphentheorie I, II. Wissenschaftliche Buchgesellschaft, Darmstadt 1981. MR 81m:05001; MR 84h:05001
  • 7. I.M. James, Topological and Uniform Spaces. Springer Verlag, New York, 1987. MR 89b:54001
  • 8. H.A. Jung, Wurzelbäume und unendliche Wege in Graphen. Mathematische Nachrichten 41, 1969. MR 42:1710
  • 9. D. König, Theorie der endlichen und unendlichen Graphen. Akademische Verlagsgesellschaft, Leipzig 1936 (reprinted: Chelsea, New York, 1950). MR 12:195g
  • 10. H. Schubert, Topologie. B.G. Teubner Verlag, Stuttgart, 1964. MR 30:551
  • 11. P.D. Seymour and R. Thomas, An end-faithful counterexample. Directions in Infinite Graph Theory and Combinatorics (R. Diestel, Ed.), Topics in Discrete Mathematics 3, North-Holland Publ. Co., Amsterdam / London, 1992. CMP 92:14
  • 12. C. Thomassen, Infinitely connected graphs with no end-preserving spanning trees. preprint, 1990.
  • 13. K. Waas, Topologisch endentreue Bäume in unendlichen Graphen. Diplomarbeit, Universität Bielefeld, 1994.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 05C10

Retrieve articles in all journals with MSC (1991): 05C10


Additional Information

Kerstin Waas
Affiliation: Fakultät für Mathematik, TU Chemnitz D-09107 Chemnitz, Germany

DOI: https://doi.org/10.1090/S0002-9947-99-02255-2
Keywords: Infinite graph, topological end space, uniformly end-faithful, topologically end-faithful
Received by editor(s): January 20, 1997
Additional Notes: Supported by Deutsche Forschungsgemeinschaft
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society