Eigenvalue estimate on complete noncompact Riemannian manifolds and applications

Authors:
Manfredo P. do Carmo and Detang Zhou

Journal:
Trans. Amer. Math. Soc. **351** (1999), 1391-1401

MSC (1991):
Primary 53C42; Secondary 53A10, 53C20, 35J60

MathSciNet review:
1451597

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain some sharp estimates on the first eigenvalues of complete noncompact Riemannian manifolds under assumptions of volume growth. Using these estimates we study hypersurfaces with constant mean curvature and give some estimates on the mean curvatures.

**[AdC]**H. Alencar and M. do Carmo,*Hypersurfaces of constant mean curvature with finite index and volume of polynomial growth*, Arch. Math. (Basel)**60**(1993), no. 5, 489–493. MR**1213521**, 10.1007/BF01202317

H. Alencar and M. do Carmo,*Erratum to: “Hypersurfaces of constant mean curvature with finite index and volume of polynomial growth” [Arch. Math. (Basel) 60 (1993), no. 5, 489–493; MR1213521 (94a:53087)]*, Arch. Math. (Basel)**65**(1995), no. 3, 271–272. MR**1344027**, 10.1007/BF01195099**[CGT]**Jeff Cheeger, Mikhail Gromov, and Michael Taylor,*Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds*, J. Differential Geom.**17**(1982), no. 1, 15–53. MR**658471****[CrY]**Jeff Cheeger and Shing Tung Yau,*A lower bound for the heat kernel*, Comm. Pure Appl. Math.**34**(1981), no. 4, 465–480. MR**615626**, 10.1002/cpa.3160340404**[CY]**S. Y. Cheng and S. T. Yau,*Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math.**28**(1975), no. 3, 333–354. MR**0385749****[EK]**Eells, J. Jr., Kobayashi, S.,*Problems in differential geometry, In:*, Proc. of US-Japan Seminar on differential geometry. Kyoto**1965**, 167-177.**[F]**Fite, W.B.,*Concerning the zeros of the solutions of certain differential equations*, Trans. Amer. Math. Soc.**19**(1918), 341-352.**[FC]**D. Fischer-Colbrie,*On complete minimal surfaces with finite Morse index in three-manifolds*, Invent. Math.**82**(1985), no. 1, 121–132. MR**808112**, 10.1007/BF01394782**[Fr]**Katia Rosenvald Frensel,*Stable complete surfaces with constant mean curvature*, Bol. Soc. Brasil. Mat. (N.S.)**27**(1996), no. 2, 129–144. MR**1418929**, 10.1007/BF01259356**[G]**Michael E. Gage,*Upper bounds for the first eigenvalue of the Laplace-Beltrami operator*, Indiana Univ. Math. J.**29**(1980), no. 6, 897–912. MR**589652**, 10.1512/iumj.1980.29.29061**[HK]**Ernst Heintze and Hermann Karcher,*A general comparison theorem with applications to volume estimates for submanifolds*, Ann. Sci. École Norm. Sup. (4)**11**(1978), no. 4, 451–470. MR**533065****[O]**Robert Osserman,*Bonnesen-style isoperimetric inequalities*, Amer. Math. Monthly**86**(1979), no. 1, 1–29. MR**519520**, 10.2307/2320297**[P]**Mark A. Pinsky,*The spectrum of the Laplacian on a manifold of negative curvature. I*, J. Differential Geom.**13**(1978), no. 1, 87–91. MR**520603****[T]**Michael E. Taylor,*𝐿^{𝑝}-estimates on functions of the Laplace operator*, Duke Math. J.**58**(1989), no. 3, 773–793. MR**1016445**, 10.1215/S0012-7094-89-05836-5**[W]**James S. W. Wong,*Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients*, Trans. Amer. Math. Soc.**144**(1969), 197–215. MR**0251305**, 10.1090/S0002-9947-1969-0251305-6**[Z]**Detang Zhou,*Laplace inequalities with geometric applications*, Arch. Math. (Basel)**67**(1996), no. 1, 50–58. MR**1392052**, 10.1007/BF01196166

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
53C42,
53A10,
53C20,
35J60

Retrieve articles in all journals with MSC (1991): 53C42, 53A10, 53C20, 35J60

Additional Information

**Manfredo P. do Carmo**

Affiliation:
IMPA, Estrada Dona Castorina, 110-Jardim Botanico 22460-320 Rio de Janeiro, Brazil

Email:
manfredo@ impa.br

**Detang Zhou**

Affiliation:
Department of Mathematics, Shandong University, Jinan, Shandong 250100, China

DOI:
http://dx.doi.org/10.1090/S0002-9947-99-02061-9

Keywords:
Riemannian manifold,
eigenvalue,
hypersurface,
mean curvature

Received by editor(s):
November 15, 1996

Received by editor(s) in revised form:
February 28, 1997

Additional Notes:
Supported partially by NNSFC and TWAS-IMPA membership

Article copyright:
© Copyright 1999
American Mathematical Society