Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A counterexample concerning the relation between decoupling constants and $\operatorname{UMD}$-constants

Author: Stefan Geiss
Journal: Trans. Amer. Math. Soc. 351 (1999), 1355-1375
MSC (1991): Primary 46B07, 60G42; Secondary 46B70, 60B11
MathSciNet review: 1458301
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For Banach spaces $X$ and $Y$ and a bounded linear operator
$T:X \rightarrow Y$ we let $\rho(T):=\inf c$ such that

\begin{displaymath}\left( AV_{\theta _l = \pm 1} \left\|\sum\limits _{l=1}^\infty \theta _l \left( \sum\limits _{k=\tau _{l-1}+1}^{\tau _l} h_k T x_k \right)\right\|_{L_2^Y}^2 \right)^{\frac{1}{2}} \le c \left\| \sum\limits _{k=1}^\infty h_k x_k \right\| _{L_2^X} \end{displaymath}

for all finitely supported $(x_k)_{k=1}^\infty \subset X$ and all $0 = \tau _0 < \tau _1 < \cdots$, where $(h_k)_{k=1}^\infty \subset L_1[0,1)$ is the sequence of Haar functions. We construct an operator $T:X \rightarrow X$, where $X$ is superreflexive and of type 2, with $\rho(T)<\infty$ such that there is no constant $c>0$ with

\begin{displaymath}\sup _{\theta _k = \pm 1} \left\| \sum\limits _{k=1}^\infty \theta _k h_k T x_k \right\| _{L_2^X} \le c \left\| \sum\limits _{k=1}^\infty h_k x_k \right\| _{L_2^X}. \end{displaymath}

In particular it turns out that the decoupling constants $\rho(I_X)$, where $I_X$ is the identity of a Banach space $X$, fail to be equivalent up to absolute multiplicative constants to the usual $\operatorname{UMD}$-constants. As a by-product we extend the characterization of the non-superreflexive Banach spaces by the finite tree property using lower 2-estimates of sums of martingale differences.

References [Enhancements On Off] (What's this?)

  • 1. D.J. Aldous. Unconditional bases and martingales in ${L}_p(F)$. Math. Proc. Camb. Phil. Soc., 85:117-123, 1979. MR 80b:60009
  • 2. N.H. Asmar and S.J. Montgomery-Smith. On the distribution of Sidon series. Ark. Math., 31(1):13-26, 1993. MR 94i:43006
  • 3. B. Beauzamy. Introduction to Banach spaces and their geometry, volume 68 of Mathematics Studies. North-Holland, Amsterdam, New York, Oxford, 1985. MR 88f:46021
  • 4. J. Bergh and J. L\H{o}fstr\H{o}m. Interpolation spaces. An introduction. Springer, 1976. MR 58:2349
  • 5. J. Bergh and J. Peetre. On the spaces $v_p$ $(0<p<\infty)$. Bollettino della Unione Matematica Italiana, 10:632-648, 1974. MR 52:1289
  • 6. J. Bourgain. Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat., 21:163-168, 1983. MR 85a:46011
  • 7. D.L. Burkholder. Martingales and Fourier analysis in Banach spaces. In C.I.M.E. Lectures, Varenna (Como), Italy, 1985, volume 1206 of Lect. Notes in Math., pages 61-108. Springer, 1986. MR 88c:42017
  • 8. D.L. Burkholder. Explorations in martingale theory and its applications. In Ecole d'Eté de Probabilités de Saint-Flour XIX-1989, volume 1464 of Lect. Notes Math., pages 1-66. Springer, 1991. MR 92m:60037
  • 9. D.L. Burkholder, B.J. Davis, and R.F. Gundy. Integral inequalities for convex functions of operators on martingales. In Proc. 6th Berkeley Sympos, volume 2 of Math. Statist. Probab., pages 223-240, 1972. MR 53:4214
  • 10. D.L. Burkholder and R.F. Gundy. Extrapolation and interpolation of quasilinear operators on martingales. Acta Math., 124:249-304, 1970. MR 55:13567
  • 11. D.H.J. Garling. Random martingale transform inequalities. In Probability in Banach spaces 6. Proceedings of the sixth international conference, Sandbjerg, Denmark 1986, pages 101-119. Birkhäuser, 1990. MR 92a:60111
  • 12. A.M. Garsia. Martingale inequalities. Seminar Notes on Recent Progress. Benjamin, Reading, 1973. MR 56:6844
  • 13. S. Geiss. ${BMO}_{\psi}$-spaces and applications to extrapolation theory. Studia Math., 122(3):235-274, 1997. MR 98a:46037
  • 14. P. Hitczenko. Upper bounds for the ${L}_p$-norms of martingales. Probab. Th. Rel. Fields, 86:225-238, 1990. MR 92a:60112
  • 15. P. Hitczenko. Domination inequality for martingale transforms of a Rademacher sequence. Israel J. Math., 84:161-178, 1993. MR 94i:60061
  • 16. R.C. James. Some self dual properties of normed linear spaces. Ann. of Math. Studies, 69:159-175, 1972. MR 56:12849
  • 17. R.C. James. Super-reflexive Banach spaces. Can. J. Math., 5:896-904, 1972. MR 47:9248
  • 18. M. Ledoux and M. Talagrand. Probability in Banach spaces. Springer, 1991. MR 93c:60001
  • 19. J. Lindenstrauss and L. Tzafriri. Classical Banach spaces I/II. Springer, 1977/1979. MR 58:17766 MR 81c:46001
  • 20. B. Maurey. Système de Haar. Seminaire Maurey-Schwartz, Ecole Polytechnique, Paris, 1974-1975. MR 54:8851
  • 21. G. Pisier. Un exemple concernant la superréflexivité. Seminaire Maurey-Schwartz, Ecole Polytechnique, Paris, 1974-1975. MR 53:14090
  • 22. G. Pisier. Martingales with values in uniformly convex spaces. Israel J. Math., 20:326-350, 1975. MR 52:14940
  • 23. G. Pisier and Q. Xu. Random series in the real interpolation spaces between the spaces $v_p$. In Israel Functional Seminar, GAFA, volume 1267 of Lect. Notes Math., pages 185-209. Springer, 1987. MR 89d:46011
  • 24. J. Wenzel. Personal communication.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 46B07, 60G42, 46B70, 60B11

Retrieve articles in all journals with MSC (1991): 46B07, 60G42, 46B70, 60B11

Additional Information

Stefan Geiss
Affiliation: Mathematisches Institut der Friedrich–Schiller–Universität, Postfach, D–O7740 Jena, Germany

Keywords: Vector valued martingales, unconditional constants, superreflexive Banach spaces, interpolation of Banach spaces
Received by editor(s): November 4, 1996
Received by editor(s) in revised form: April 8, 1997
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society