Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Haar Measure and the Artin Conductor


Authors: Benedict H. Gross and Wee Teck Gan
Journal: Trans. Amer. Math. Soc. 351 (1999), 1691-1704
MSC (1991): Primary 11E64
DOI: https://doi.org/10.1090/S0002-9947-99-02095-4
MathSciNet review: 1458303
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a connected reductive group, defined over a local, non-archimedean field $k$. The group $G(k)$ is locally compact and unimodular. In On the motive of a reductive group, Invent. Math. 130 (1997), by B. H. Gross, a Haar measure $|\omega _G|$ was defined on $G(k)$, using the theory of Bruhat and Tits. In this note, we give another construction of the measure $|\omega _G|$, using the Artin conductor of the motive $M$ of $G$ over $k$. The equivalence of the two constructions is deduced from a result of G. Prasad.


References [Enhancements On Off] (What's this?)

  • [B-T] F. Bruhat and J. Tits, Groupes Reductifs sur un Corps Local I, IHES 41(1972), Pg 5-252; II, IHES 60(1984), Pg 5-184. MR 42:6245; MR 86c:20042
  • [Ch] C. Chevalley, Invariants of Finite Groups Generated by Reflections, Amer. J. Math. 77(1955), Pg 778-782. MR 17:345d
  • [Gr] B.H. Gross, On the Motive of a Reductive Group, Invent. Math. 130 (1997), 287-313. CMP 98:02
  • [K] R. Kottwitz, Sign Changes in Harmonic Analysis on Reductive Groups, Trans. AMS 278(1983), Pg 289-297. MR 84i:22012
  • [L] G. Laumon, Cohomology of Drinfeld Modular Varieties, Cambridge Studies in Advanced Math. 41(1996). MR 98c:11045a
  • [M-H] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer Ergebnisse 73(1973). MR 58:22129
  • [O] T. Ono, On the Arithmetic of Algebraic Tori, Annals of Math. 74(1961), Pg 101-139. MR 23:A1640
  • [P] G. Prasad, Volumes of S-arithmetic Quotients of Semisimple Groups, IHES 69(1989), Pg 91-117. MR 91c:22023
  • [Se] J.P. Serre, Linear Representations of Finite Groups, Springer GTM 42. MR 56:8675
  • [Se2] J.P. Serre, Conducteurs d'Artin des caracteres reels, Invent. Math. 14(1971), Pg 173-183. MR 48:273
  • [Se3] J.P. Serre, Local Fields, Springer GTM 67, 1979. MR 82e:12016
  • [Sp] T. Springer, Reductive Groups, in Proceedings of Symposium in Pure Math., Vol. 33, Part 1, Amer. Math. Soc., 1979. MR 80h:20062
  • [St] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Memoirs AMS 80(1968). MR 37:6288
  • [T] J. Tate, Les conjectures des Stark sur les fonctions L d'Artin en s=0, Birkhäuser Progress in Math. 47(1984). MR 86e:11112

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11E64

Retrieve articles in all journals with MSC (1991): 11E64


Additional Information

Benedict H. Gross
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Email: gross@math.harvard.edu

Wee Teck Gan
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08540
Email: wtgan@math.princeton.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02095-4
Received by editor(s): March 4, 1997
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society