Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Vertex operators for
twisted quantum affine algebras


Authors: Naihuan Jing and Kailash C. Misra
Journal: Trans. Amer. Math. Soc. 351 (1999), 1663-1690
MSC (1991): Primary 17B37, 17B67; Secondary 82B23, 81R10, 81R50
DOI: https://doi.org/10.1090/S0002-9947-99-02098-X
MathSciNet review: 1458306
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct explicitly the $q$-vertex operators (intertwining operators) for the level one modules $V(\Lambda _i)$ of the classical quantum affine algebras of twisted types using interacting bosons, where $i=0, 1$ for $A_{2n-1}^{(2)}$ ($n\geq 3$), $i=0$ for $D_4^{(3)}$, $i=0, n$ for $D_{n+1}^{(2)}$ ($n\geq 2$), and $i=n$ for $A_{2n}^{(2)}$ ($n\geq 1$). A perfect crystal graph for $D_4^{(3)}$ is constructed as a by-product.


References [Enhancements On Off] (What's this?)

  • 1. B. Davies, O. Foda, M. Jimbo, T. Miwa and A. Nakayashiki, Diagonalization of the XXZ Hamiltonian by vertex operators, Commun. Math. Phys. 151 (1993), 89-153. MR 94a:82018
  • 2. E. Date, M. Jimbo, and M. Okado, Crystal base and $q$-vertex operators, Commun. Math. Phys. 155 (1993), 47-69. MR 94f:17012
  • 3. V.G. Drinfeld, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 (1988), 212-216. MR 88j:17020
  • 4. I.B. Frenkel and N. Jing, Vertex representations of quantum affine algebras, Proc. Natl. Acad. Sci. USA 85 (1988), 9373-9377. MR 90e:17028
  • 5. I.B. Frenkel and N. Reshetikhin, Quantum affine algebras and holonomic difference equations, Commun. Math. Phys. 146 (1992), 1-60. MR 94c:17024
  • 6. M. Idzumi, Level two irreducible representations of $U_q(\hat{sl}_2)$, Int. J. Mod. Phys. A. 9 (1994), 4449-4484. MR 95j:17029
  • 7. M. Jimbo, K. Miki, T.Miwa and A. Nakayashiki, Correlation functions of the XXZ model for $\Delta < -1$, Phys. Lett. A 168 (1992), 256-263. MR 93m:82007
  • 8. M. Jimbo and T. Miwa, Algebraic analysis of solvable lattice models, CBMS series 85, Amer. Math. Soc., Providence, RI, 1995. MR 96e:82037
  • 9. N. Jing, Twisted vertex representations of quantum affine algebras, Invent. Math. 102 (1990), 663-690. MR 92a:17019
  • 10. N. Jing, Higher level representations of the quantum affine algebra $U_q(\hat{sl}(2))$, J. Algebra 182 (1996), 448-468. MR 97f:17017
  • 11. N. Jing, On Drinfeld realization of quantum affine algebras, in The Monster and Lie Algebras, ed. J. Ferrar and K. Harada, Ohio State Univ. Math. Res. Publ. 7, de Gruyter, Berlin-New York, 1998. q-alg/9610035.
  • 12. N. Jing, S.-J. Kang, Y. Koyama, Vertex operators of quantum affine Lie algebras $U_q(D_n^{(1)})$, Commun. Math. Phys. 174 (1995), 367-392. MR 96j:17022
  • 13. N. Jing and K. C. Misra, Vertex operators of level one $U_q(B_n^{(1)})$-modules, Lett. Math. Phys. 36 (1996), 127-143. MR 97b:17022
  • 14. V.G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 92k:17038
  • 15. S.-J. Kang, M. Kashiwara, K.C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki , Affine crystals and vertex models , Inter. J. Mod. Phys. A 7 (1992), 449-484. MR 94a:17008
  • 16. A. Kato, Y. Quano and J. Shiraishi, Free boson representation of $q$-vertex operators and their correlation functions, Commun. Math. Phys. 157 (1993), 119-137. MR 95a:81125
  • 17. Y. Koyama, Staggered polarization of vertex models with $U_q(\widehat {sl}(n))$-symmetry, Commun. Math. Phys. 164 (1994), 277-291. MR 96h:17021
  • 18. A. Matsuo, A $q$-deformation of Wakimoto modules, primary fields and screening operators, Commun. Math. Phys. 151 (1993), 89-153. MR 95h:17033

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 17B37, 17B67, 82B23, 81R10, 81R50

Retrieve articles in all journals with MSC (1991): 17B37, 17B67, 82B23, 81R10, 81R50


Additional Information

Naihuan Jing
Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
Email: jing@eos.ncsu.edu

Kailash C. Misra
Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
Email: misra@math.ncsu.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02098-X
Keywords: Quantum affine algebras, $q$-vertex operators
Received by editor(s): August 30, 1996
Received by editor(s) in revised form: March 11, 1997
Additional Notes: The first author is supported in part by NSA grants MDA 904-94-H-2061 and MDA 904-96-1-0087. The second author is supported in part by NSA grant MDA 904-96-1-0013.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society