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C∗-ALGEBRAS GENERATED BY A SUBNORMAL OPERATOR

KIT C. CHAN AND Z̆ELJKO C̆UC̆KOVIĆ

Abstract. Using the functional calculus for a normal operator, we provide
a result for generalized Toeplitz operators, analogous to the theorem of Axler
and Shields on harmonic extensions of the disc algebra. Besides that result,
we prove that if T is an injective subnormal weighted shift, then any two
nontrivial subspaces invariant under T cannot be orthogonal to each other.
Then we show that the C∗-algebra generated by T and the identity operator
contains all the compact operators as its commutator ideal, and we give a
characterization of that C∗-algebra in terms of generalized Toeplitz operators.
Motivated by these results, we further obtain their several-variable analogues,
which generalize and unify Coburn’s theorems for the Hardy space and the
Bergman space of the unit ball.

1. Introduction

On a separable Hilbert space H , a bounded linear operator S : H → H is
said to be a subnormal operator if there exists a Hilbert space L containing H
and a normal operator N : L → L such that H is invariant under N and the
restriction N |H is S. If H reduces N , then S is actually normal. If there is no
proper subspace of L that contains H and reduces N , then N is called a minimal
normal extension of S. In this paper we discuss the C∗-algebra, denoted by C∗(S),
generated by S and the identity operator I on H , by using the functional calculus
for a minimal normal extension N of S. In particular, we make connection with the
theorem of Axler and Shields [1] which says that the algebra generated by the disc
algebra and a function that is harmonic but not analytic on the disc is the algebra
of all continuous functions on the closed disc. When S is an injective subnormal
weighted shift operator, we completely characterize the C∗-algebra C∗(S) in terms
of the continuous functions on the spectrum of N . Using this characterization we
can determine when an operator in C∗(S) is compact.

C. A. Berger has shown that every subnormal weighted shift T is unitarily equiv-
alent to the operator Mz on certain Hilbert space of analytic functions. Based on
this unitary equivalence R. E. Frankfurt has studied a lot of properties of T in
his papers [10], [11], [12]. In Sections 2 and 3, we further develop the theory of a
subnormal weighted shift based on Berger’s result. Then in Section 4, we discuss
the C∗-algebra C∗(T ). Most of the techniques that we use in that section call for
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the theory of a single subnormal operator, and a minimal normal extension of it.
A good reference for this subject is found in Conway’s book [6].

In Section 5 we generalize our results to their n-variable analogues. In particular,
we show that if U denotes the C∗-algebra generated by the identity and the Toeplitz
operators whose symbols are the coordinate functions, and if K denotes the ideal
of compact operators, then U contains K and U/K is isometrically ∗-isomorphic
to the algebra of continuous functions on the unit sphere. To show that we can
employ only some of the techniques that appear in Sections 2, 3, and 4, and we
need more techniques from the theory of C∗-algebras and operator theory. The
major difference is that when we study the n-variable analogues, we have to deal
with n commuting subnormal operators. However, it was shown by A. Lubin [19]
that there exist commuting subnormal n-variable shift operators that do not have
commuting normal extensions.

2. Subnormal unilateral shifts

One of the most studied classes of linear operators on a separable Hilbert space is
the weighted shifts; see the survey article on this topic by Allen Shields [24]. These
operators are important because they provide numerous interesting examples in
operator theory, and have a strong connection with analytic function theory. The
connection is even stronger when the shifts are subnormal, and in this section we
make use of the connection to prove that any two nontrivial invariant subspaces
of an injective subnormal unilateral weighted shift cannot be orthogonal to each
other.

A linear operator T on an infinite dimensional separable complex Hilbert space
H is called a unilateral weighted shift with weight sequence {wk : k ≥ 0} if there is
an orthonormal basis {ek : k ≥ 0} of H such that

Tek = wkek+1,

for all integers k ≥ 0. It is known that, from [24, Page 52], T is unitarily equivalent
to the unilateral weighted shift with nonnegative weight sequence {|wk| : k ≥ 0}.
In addition, one can easily check that T is injective if and only if every weight wn
is nonzero. In this paper we consider only those weighted shifts that are injective,
and so in the rest of this paper, when we say T is a unilateral shift we always mean
that T is an injective unilateral weighted shift. Equivalently, we always make the
following assumption:

Assumption. wk > 0 for all integers k ≥ 0.

When the unilateral shift T is subnormal, T has a nice connection with function
theory, due to an unpublished result of C. A. Berger, quoted as Theorem 1 below.
To explain that connection we require the following notation. For a compactly
supported Borel measure µ on the complex plane C, we use P 2(µ) to denote the
closure of the polynomials in L2(µ). On P 2(µ) we define the linear operator of
multiplication by the position function z as Mz : P 2(µ) → P 2(µ) such that Mzf =
zf.

Theorem 1 (Berger). If T is an injective unilateral shift with ‖T ‖ = 1, then the
following are equivalent:
(a) T is subnormal.
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(b) There is a positive Borel measure ν on the closed interval [0, 1], with ν[0, 1] = 1
and with 1 in the support of ν, such that if dµ = dθdν/2π, then T is unitarily
equivalent to Mz on P 2(µ).

An interested reader can find Theorem 1 in [6, Theorem 8.16, Page 159], or a
more descriptive version in [10, Theorem 8]. With the measures ν and µ as stated
in the theorem, we point out that for m 6= k,∫

[0,1]

∫ 2π

0

zmzk
dθdν

2π
= 0.

Thus the sequence {zk}∞0 is an orthogonal basis of P 2(µ). If we let ‖ · ‖ denote the
norm of P 2(µ), and let βk = ‖zk‖, then the sequence {zk/βk} is an orthonormal
basis of P 2(µ). It follows that, by a Hilbert space argument, a function is in P 2(µ)
if and only if it has a power series representation of the form

∞∑
k=0

ak
zk

βk

where the sequence {ak} satisfies
∑ |ak|2 < ∞. Every such power series represen-

tation is analytic in the open unit disc ∆, as indicated in [6, Proposition 8.19, Page
163]. We now want to show a slightly stronger statement: The largest open set in
which all power series in P 2(µ) converge is exactly ∆. This statement is now de-
duced by using [24, Theorem 10, Page 73]: If we denote R = lim inf β1/k

k , then the
largest open disc in which all the power series in P 2(µ) converge is {z : |z| < R}.
To show that R = 1, it suffices to show that R ≤ 1, which is obvious.

From now on we identify a subnormal unilateral shift with the multiplication
operatorMz without further comment. Note that the class of spaces P 2(µ) includes
the Hardy space H2 and the Bergman space A2.

Since every function f in P 2(µ) is analytic on ∆, we can evaluate f at a point ζ
in ∆. It is known, from [6, Proposition 8.19, Page 163], that the linear functional
λζ : f 7→ f(ζ) is continuous on P 2(µ), and furthermore by the principle of uniform
boundedness we deduce that if E is a compact subset of ∆, then sup{‖λζ‖ : ζ ∈ E}
is finite. It follows that there exists a positive constant C, depending on E and µ,
such that for all ζ ∈ E and all f ∈ P 2(µ),

|f(ζ)| ≤ C‖f‖.
With this inequality, one can easily show the following proposition, using that
ν[R, 1] > 0.

Proposition 2. If 0 < R < 1, then there exists a positive constant C, depending
on R and the measure µ, such that for every function f in P 2(µ),

‖f‖2 ≤ C

∫
[R,1]

∫ 2π

0

|f |2 dθ
2π
dν.

One can now see, from Proposition 2, that the norm of P 2(µ) is equivalent to
the norm given by

∫
[R,1]

∫ 2π

0 |f |2 dθ2πdν. With this equivalence we now identify the
approximate point spectrum σap(T ) of a subnormal unilateral shift T . Without
doubt this is well-known, but we present it in the next proposition because the
techniques we use in its proof are also important to our work later in the present
paper. If ‖T ‖ = 1, then it is known, from [6, Page 158], that the spectrum σ(T ) of
T is the closed unit disc ∆. Thus ∂∆ ⊂ σap(T ).
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Proposition 3. If T is an injective subnormal unilateral shift with ‖T ‖ = 1, then
σap(T ) = ∂∆.

Proof. It suffices to show that if ζ ∈ ∆, then T − ζ is bounded below. For that we
let R > 0 satisfy |ζ| < R < 1. Using Proposition 2, we can obtain

‖(T − ζ)f‖2 ≥ 1
C

(R− |ζ|)2‖f‖2.

It is known that even when the unilateral shift T is not subnormal, there does
not exist a pair of proper invariant subspaces S1 and S2 (not necessarily orthogonal
complements) such that the underlying Hilbert space is the direct sum of S1 and
S2; see [24, Corollary 2, Page 63]. As a result, T is not reducible. This means that
T does not have a nontrivial reducing subspace. When T is subnormal, we have
the following result.

Theorem 4. If T is an injective subnormal unilateral shift with two nontrivial
invariant subspaces S1 and S2, then S1 and S2 are not orthogonal to each other.

Proof. Without loss of generality we can assume that ‖T ‖ = 1 because T and
T/‖T ‖ have the same invariant subspaces. By Theorem 1, we can assume that T
is Mz on P 2(µ). Suppose that S1 and S2 are two orthogonal nontrivial invariant
subspaces of Mz. We prove the theorem by picking f from S1 and g from S2, and
then show that either f is the zero function or g is.

Since S1 and S2 are invariant under Mz, for any nonnegative integers k and m,
the functions zkf and zmg are orthogonal. In other words,∫

∆

zkzmfg dµ = 0.

By the linearity of integrals, this equation still holds if we replace zkzm by any
polynomial in z and z. Consequently by the Stone-Weierstrass theorem, for any
continuous function h on ∆, we have∫

∆

hfg dµ = 0.

Since the measure fgdµ is necessarily regular, by [21, Theorem 2.18, Page 48],
an application of the Riesz Representation theorem shows that fgdµ is the zero
measure on ∆ and thus ∫

∆

|fg|dµ = 0.

We now focus on the case when the measure ν has a point mass at 1, say ν{1} = a
where 0 < a ≤ 1. In this case one can show that if p is a polynomial, then∫ 2π

0

|p(eiθ)|2 a dθ
2π

≤
∫ 2π

0

∫ 1

0

|p(reiθ)|2 dθ
2π
dν(r) < ∞.

Thus a sequence of polynomials that is Cauchy in P 2(µ) is also Cauchy in P 2(θ).
It follows that P 2(µ) is contained in the Hardy space H2 and so the functions f
and g are in H2. Hence we have

∫ |fg|dθ = 0. This in turn implies that f is the
zero function or g is.

The second case is when the measure ν does not have a point mass at 1. If
there exists a point r ∈ (0, 1) such that |fg| = 0 on the circle {|z| = r}, then
by Cauchy’s integral formula we see that fg = 0 in r∆, and thus either f is the
zero function in ∆ or g is. If there does not exist such a point r, then for every
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a ∈ (0, 1) there exists a point z with |z| = a such that |f(z)g(z)| > 0. By our
assumption that ν{1} = 0, there exists ρ ∈ [0, 1) such that ρ is in the support of ν.
Since the set {z : |f(z)g(z)| > 0} is open, it contains an open disc E centered at a
point z0 with |z0| = ρ. It follows that µ(E) > 0. Hence

∫
E
|fg|dµ > 0, which is a

contradiction.

The conclusion of Theorem 4 is not surprising when T is the operatorMz : H2 →
H2. This is simply because of the fact that any two nontrivial invariant subspaces
of H2 must have nonzero intersection, due to Beurling’s characterization of all the
invariant subspaces; see [8]. As a result the operator Mz : H2 → H2 is irreducible.
There are other proofs for its irreducibility, as given in [14, Page 40] and also in [20,
Page 38]. However, none of these proofs can be generalized to work for unilateral
weighted shifts, which are also irreducible as indicated before. In the case that the
shift is subnormal, Theorem 4 gives another proof for the following result:

Corollary 5. Every injective subnormal unilateral shift is irreducible.

In the case of the Bergman space A2, its invariant subspaces are very different
from those of the Hardy space. H. Bercovici, C. Foias and C. M. Pearcy [2] have
proved that there exists a family {Sα : α ∈ C} of closed subspaces in A2 invariant
under Mz such that Sα ∩ Sβ = {0} if α 6= β. Theorem 4 complements this result
by proving that Sα cannot be orthogonal to Sβ if α 6= β.

3. C∗-algebras

In the preceding section we built up the necessary tools to discuss the C∗-algebra
generated by a subnormal unilateral shift and the identity operator. Before we start
our discussion, we need to investigate some results on the C∗-algebra generated by
a general subnormal operator, not necessarily a subnormal unilateral shift.

We let H be an infinite dimensional separable Hilbert space, and let S : H → H
be a subnormal operator with ‖S‖ = 1. Since any two minimal normal extensions of
S are unitarily equivalent by [6, Corollary 2.7, Page 129], we let the minimal normal
extension of S be denoted by N : L → L, where L is a Hilbert space containing
H . With a scalar-valued spectral measure µN on the spectrum σ(N) of N , the
functional calculus for a normal operator defines an isometrical ∗-isomorphism ρ
from L∞(µN ) to the abelian von Neumann algebra generated byN . If g is a function
in L∞(µN ), then we denote the operator ρ(g) by g(N). Using this functional
calculus and the orthogonal projection P from L onto H , we can define the Toeplitz
operator Tg : H → H by

Tgf = Pg(N)f for all f ∈ H.
The function g is called the symbol of the operator Tg.

The Toeplitz operators that we are interested in this paper are those having
continuous symbols. This is because of a result from [6, Lemma 13.4, Page 211]: If
g is a function in C(σ(N)), then Tg is an operator in the C∗-algebra, denoted by
C∗(S), generated by the subnormal operator S and the identity operator I.

The operator N and the identity operator I on L generate a commutative C∗-
algebra, denoted by C∗(N), and there is an isometrical ∗-isomorphism ρN from
C∗(N) to the algebra C(σ(N)) of all continuous functions on σ(N) with ρN (N) = z;
this follows from [6, Theorem 1.8, Page 56]. This isomorphism ρN is the restriction
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of the isomorphism ρ−1 on C∗(N). Of course the C∗-algebra C∗(S) is not commu-
tative, and so we need to consider the commutator ideal J of C∗(S). By definition
J is the norm closed ideal generated by {AB − BA : A,B ∈ C∗(S)}. If we use
C(σap(S)) to denote the algebra of all continuous functions on the approximate
point spectrum σap(S) of S, then from [6, Page 212] we know that the following
diagram commutes:

C∗(N) - C(σ(N))
ρN

?

θ

C∗(S)
?

χ

- C∗(S)/J - C(σap(S))
π ρS

The above diagram gives us a method to relate C∗(S) to the commutative algebra
C∗(N), and it is useful to discuss Toeplitz operators with continuous symbols. We
now describe how the maps in the diagram work. Since ρN is an isometrical ∗-
isomorphism, every operator in C∗(N) must be of the form ρ−1

N (g) = ρ(g) = g(N)
for some g ∈ C(σ(N)). The mapping θ is linear and is defined by θ(g(N)) = Tg.
The mapping π is the quotient map. Note that σap(S) ⊂ σ(N) (see [6, Page
132]), and χ is the restriction map of the continuous functions on σ(N) to σap(S).
John Bunce [3] has shown that the map ρS is an isometrical ∗-isomorphism, with
ρS(Tzkzm +J) = zkzm for all nonnegative integers k and m; one may also refer this
result to Pages 210 and 212 of [6]. It follows that if g ∈ C(σ(N)), then by using
the Stone-Weierstrass theorem, we obtain ρS(Tg + J) = g|σap(S) = χ(g). From the
properties of these mappings, we deduce the following lemma.

Lemma 6. For every function g in C(σ(N)),

Tgk + J = T kg + J.

Proof. Since the diagram commutes, we see that for any function g in C(σ(N)),

ρ−1
S ◦ χ(gk) = π ◦ θ ◦ ρ−1

N (gk).

The left-hand side of the above equation is

ρ−1
S (χ(g)k) = (ρ−1

S (χ(g)))k = (Tg + J)k = T kg + J.

On the other hand, we have

π ◦ θ ◦ ρ−1
N (gk) = π(Tgk) = Tgk + J.

Since ‖S‖ = 1, the spectrum σ(S) of S is included in the closed unit disc ∆.
From [6, Theorem 2.11, Page 131], we know that σ(N) ⊂ σ(S), and so σ(N) is also
included in ∆. Although in general g is defined on σ(N), we are now interested in
those g that are continuous in ∆.

We use C(∆) to denote the algebra of continuous function on ∆, and give C(∆)
the supremum norm over ∆. We useA(∆) to denote the disc algebra, the subalgebra
of all functions in C(∆) that are analytic in ∆.



C∗-ALGEBRAS GENERATED BY A SUBNORMAL OPERATOR 1451

If f is a function in C(∆), then A(∆)[f ] denotes the norm closed algebra gen-
erated by f and A(∆). It is interesting to see when A(∆)[f ] is the whole algebra
C(∆). One interesting answer is provided as follows:

Theorem 7 (Axler and Shields [1, Theorem 4]). Let f be a function in C(∆) that
is harmonic but not analytic on ∆. Then A(∆)[f ] equals C(∆).

This theorem motivates us to discuss its analogue in the setting of Toeplitz oper-
ators as defined before, corresponding to the subnormal operator S with ‖S‖ = 1.
The major problem is that C(∆) is a commutative algebra while Toeplitz operators,
in general, do not commute.

We use τ(∆) to denote the C∗-algebra generated by all Toeplitz operators Tg
whose symbol g is in C(∆). Since ρN is an isometrical ∗-isomorphism, we see that
the adjoint T ∗g is the same as Tg, and so the C∗-algebra τ(∆) is also the closed
algebra generated by all Toeplitz operators Tg whose symbol g is in C(∆).

We use [A(∆)] to denote the algebra generated by all Toeplitz operators Tg whose
symbol g is in A(∆). By [A(∆)]/J , we denote the subalgebra generated in C∗(S)/J
by the equivalence classes Tg + J with g ∈ A(∆). In addition, we use τ(∆)/J to
denote the C∗-subalgebra generated by Tg + J with g ∈ C(∆).

Theorem 8. If f is a function in C(∆), and f is harmonic but not analytic on
∆, then the closed algebra generated by [A(∆)]/J and Tf + J equals τ(∆)/J .

Proof. By Theorem 7, for any function g in C(∆) and any positive ε, there exist
functions h0, · · · , hk in A(∆) such that if h = h0 + h1f + h2f

2 + · · ·+ hkf
k, then

|h(z)− g(z)| < ε for all z in ∆. Thus if P is the orthogonal projection from L onto
H , then

‖Tg − Th‖ = ‖P (g(N)− h(N)) ‖ ≤ ‖g(N)− h(N)‖.
It follows from the functional calculus for a normal operator (see [6, Page 93]) that
‖g(N)− h(N)‖ is equal to the supremum norm of g − h on σ(N), and so we have
shown that ‖Tg − Th‖ < ε.

Since each function hi, for 0 ≤ i ≤ k, is a uniform limit of polynomials on ∆ and
H is invariant under N , it follows that H is invariant under hi(N). Thus if x is a
vector in H , then

Thifi(x) = P (f i(N)hi(N))x = P (f i(N))hi(N)x = TfiThi(x).

Hence by Lemma 6, there exists an operator Yi in J with 0 ≤ i ≤ k, such that

Thifi = (T if + Yi)Thi .

This implies, along with our conclusion in the last paragraph, that if we let Y =
Y1Th1 + · · ·+ YkThk

, then

‖Tg − Th‖ = ‖Tg − Th0 − T 1
f Th1 − · · · − T kf Thk

− Y ‖ < ε.

Since J is an ideal and Y ∈ J , we have

‖π(Tg)− π
(
Th0 − T 1

f Th1 − · · · − T kf Thk

) ‖ < ε.

This completes the whole proof.

We now want to focus our discussion on a Toeplitz operator associated with
a subnormal unilateral shift T with ‖T ‖ = 1. By Theorem 1 we can view T as
Mz from P 2(µ) to P 2(µ). Note that a scalar-valued spectral measure µN for the
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minimal normal extension N of T is different from µ. In fact µN is a measure on
σ(N) while µ is a measure on ∆. When Mz is on the Bergman space A2, then σ(N)
is ∆, and when Mz is on the Hardy space H2, then σ(N) is ∂∆.

We now fix a scalar-valued spectral measure µN and define the Toeplitz operators
correspondingly. Let τ(σ(N)) be the C∗-algebra generated by all Toeplitz operators
Tψ : P 2(µ) → P 2(µ) whose symbol ψ is in C(σ(N)).

L. A. Coburn [5, Theorem 1] has proved the several-variable version of the follow-
ing result: If T is Mz on the Hardy space, or on the Bergman space, then τ(σ(N))
contains the whole ideal of compact operators, and furthermore τ(σ(N)) = {Tψ+A :
ψ ∈ C(σ(N)) and A compact}. In addition, Coburn also proved that the algebra
τ(σ(N)) corresponding to the Hardy space is ∗-isomorphic to that algebra corre-
sponding to the Bergman space. We now combine the Hardy space and Bergman
space versions of Coburn’s result into one setting, by generalizing some main ideas
in Coburn’s proofs. We use K to denote the algebra of all compact operators on
P 2(µ).

Lemma 9. If T is an injective subnormal unilateral shift, then the algebra τ(σ(N))
contains K.

Proof. The idea of this proof is to use a theorem of R. F. Olin and J. E. Thomson
(see [6, Theorem 13.9, Page 213]): If S is an irreducible subnormal operator such
that S∗S−SS∗ is compact, then for all u and v in C(σ(N)), the operator Tuv−TuTv
is compact.

We first note that Corollary 5 shows that T is irreducible, and in order to use
the theorem of Olin and Thomson, we must show that T ∗T − TT ∗ is compact.
Note that T is an injective subnormal shift, and by definition there exists a weight
sequence {wn}∞0 and an orthonormal basis {en}∞0 such that Ten = wnen+1 for all
integers n ≥ 0. One can easily check that if T ∗ denotes the adjoint of T , then
T ∗en = wn−1en−1 for every integer n ≥ 1, and T ∗e0 = 0.

Any vector f in the Hilbert space can be written as f =
∑
anen with

∑ |an|2 <
∞. A direct computation shows that

(T ∗T − TT ∗)f = a0w
2
0e0 +

∞∑
n=1

an(w2
n − w2

n−1)en.

Thus T ∗T−TT ∗ is a diagonal operator with its diagonal given by {w2
0, w

2
1−w2

0, · · · }.
Since T is subnormal, it is also hyponormal which by definition means that T ∗T −
TT ∗ is a positive operator. It follows that wn+1 ≥ wn for all integers n ≥ 0.
Without loss of generality, we assume that ‖T ‖ = 1 and so supwn = 1. Thus {wn}
is a sequence increasing to 1, and hence wn+1 − wn → 0 as n → ∞. This in turn
implies that the diagonal operator T ∗T − TT ∗ is compact; see [15, Problem 171].
Hence the conclusion of the theorem of Olin and Thomson holds.

To finish the proof, we use the following result [9, Corollary 4.1.10, Page 97] in
C∗-algebra theory: If W is an irreducible C∗-algebra of bounded linear operators
on a Hilbert space and W contains a nontrivial compact operator, then W contains
the whole ideal of compact operators. Here W be irreducible means that the only
closed subspaces of the Hilbert space invariant under every operator in W be the
zero subspace and the whole space.

For the C∗-algebra τ(σ(N)), Corollary 5 tells us that it is irreducible. We now
want to show that τ(σ(N)) contains a nontrivial compact operator. We observe
that Tz and Tz are in τ(σ(N)). Note that z is orthogonal to P 2(µ) since for all
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integers k ≥ 0, ∫
∆

zkzdµ =
∫

∆

zk+1dµ = 0.

Furthermore P (zz) is a nonzero constant because if k is a positive integer, then∫
∆

zzzk dµ = 0,

and for k = 0, we have ∫
∆

zzdµ =
∫

[0,1]

r2dν 6= 0.

Hence 0 = TzP (z) = TzTz(1) 6= TzTz(1) = P (zz), and so the theorem of Olin and
Thomson implies that τ(σ(N)) contains a nonzero compact operator.

We remark here that in the proof of Lemma 9, we show that if T is a subnormal
unilateral shift, then T has the following two properties: T is irreducible and T ∗T −
TT ∗ is compact. We know, from [6, Lemma 13.8, Page 213], that if A is an
operator with these two properties, then the commutator ideal of C∗(A), the C∗-
algebra generated by A and the identity I, is the ideal of all compact operators.
Hence we have J = K. As indicated in the beginning of this section, τ(σ(N)) is
contained in C∗(T ). Thus Lemma 9 implies that the quotient algebra τ(σ(N))/K
is commutative.

For a subnormal operator S and its the minimal normal extension N , Keough
[17] has the following result: If S is irreducible and S∗S − SS∗ is compact, then
C∗(S) = {Tu + A : u ∈ C(σ(N)) and A compact}. For a reference of this result,
one may also see [6, Page 216]. The conclusion of this result certainly holds when
S is a subnormal unilateral shift. Using Keough’s result we now prove the next
theorem.

Theorem 10. If T is an injective subnormal unilateral shift, then τ(σ(N)) =
C∗(T ).

Proof. Let ψ be a function continuous on σ(N) and let [Tψ] be the equivalence
class in τ(σ(N))/K that contains Tψ. One can show that the map ψ → [Tψ]
is a ∗-homomorphism from C(σ(N)) into τ(σ(N))/K. The range of this map is
a closed ∗-subalgebra in τ(σ(N))/K, by [9, Corollary 1.8.3, Page 21]. Since the
range contains [Tψ] for all ψ in C(σ(N)), the range is τ(σ(N))/K. Thus τ(σ(N)) =
{Tu + A : u ∈ C(σ(N)) and A compact}, which is C∗(T ).

One question arises naturally: If T is a subnormal unilateral shift with unit norm
and ψ is a continuous function on σ(N), when is Tψ compact? The answer is that
for Tψ to be compact, it is necessary and sufficient that ψ vanishes on ∂∆. This
answer can be deduced by using Proposition 3 and the result from [6, Corollary
13.6, Page 212]: If S is subnormal, N is its minimal normal extension, and u is a
function in C(σ(N)), then Tu ∈ J if and only if u(λ) = 0 for each λ ∈ σap(S). Along
with Theorem 10, this answer tells us that the map that takes the equivalence class
[Tψ] in τ(σ(N))/K to the restriction of ψ on ∂∆ is an isometrical ∗-isomorphism
onto the algebra C(∂∆) of continuous functions on ∂∆. Thus we have proved the
following.

Corollary 11. τ(σ(N))/K is isometrically ∗-isomorphic to C(∂∆).
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4. Subnormal bilateral shifts

In the preceding two sections we obtained a few results for an injective subnor-
mal unilateral shift, and in this section we discussed those results for an injective
subnormal bilateral shift. A linear operator T on an infinite dimensional separa-
ble complex Hilbert space is called a bilateral weighted shift with weight sequence
{wk : −∞ < k < ∞} if there is an orthonormal basis {ek : −∞ < k < ∞} of H
such that

Tek = wkek+1

for all integers k. Similar to our discussions on unilateral shifts, we assume that
every bilateral shift is injective and further assume, by unitary equivalence, that
wk > 0 for all integers k. In the case when the bilateral shift T is subnormal,
the situation is similar but different from the setting in the previous two sections
because T cannot be viewed as Mz acting on P 2(µ). An appropriate modification
is required. If µ is a regular Borel measure on the closed unit disc ∆, then we use
R2(µ) to denote the closed linear span of {zk : −∞ < k <∞} in L2(µ). With this
notation, an analogue of Theorem 1 can be stated for a bilateral shift [6, Theorem
8.17, Page 161]: If T is an injective bilateral shift with ‖T ‖ = 1, then T is subnormal
if and only if there is a probability Borel measure ν on [0, 1] with 1 in the support
of ν such that

∫ 1

0
rkdν(r) <∞ for every integer k, and T is unitarily equivalent to

Mz on R2(dνdθ/2π).
In the rest of the present section, T denotes an injective subnormal bilateral

shift with ‖T ‖ = 1. It has been shown in [6, Page 163] that if we denote m(T ) =
inf{‖Tf‖ : ‖f‖ = 1}, then the support of the measure ν is contained in the interval
[m(T ), 1], with both end points 1 and m(T ) lying in the support of ν, and further-
more every function in R2(µ) is analytic in the annulus {z : m(T ) < |z| < 1}. As
an analogue of Theorem 4, we offer the following statement: If T has two nontrivial
invariant subspaces S1 and S2, then S1 and S2 are not orthogonal.

If N is the minimal normal extension of T and σ(N) is the spectrum of N ,
then we use τ(σ(N)) to denote the C∗-algebra generated by the Toeplitz operators
Tg : R2(µ) → R2(µ) with g ∈ C(σ(N)). We now offer the following analogue of
Lemma 9 for a bilateral shift: If T is an injective subnormal bilateral shift, then the
algebra τ(σ(N)) contains the ideal K of all compact operators. One can prove this
statement by modifying the proof of Lemma 9. For instance, the corresponding
argument in that lemma shows that if T is bilateral, then T ∗T − TT ∗ is compact.
The only difference is when we want to show that TzTz(1) 6= TzTz(1) due to the
fact that z is no longer orthogonal to R2(µ) in the bilateral case. Nevertheless, one
can check that TzTz(1) is a constant function with value 1/‖z−1‖2, while TzTz(1)
is a constant function with value ‖z‖2. We remark that ‖z‖ 6= 1/‖z−1‖, because if
they were equal, then it would follow that

1 =
∫

[0,1]

1dν =
∫

[0,1]

r
1
r
dν =

(∫
[0,1]

r2dν

) 1
2
(∫

[0,1]

1
r2
dν

) 1
2

.

The last equality in the previous line is the equality in Cauchy’s Inequality and it
happens only when r is a scalar multiple of 1/r. However that is not possible since
ν is supported at both 1 and m(T ).

A review of the proof of Theorem 10 shows that the theorem holds for a bilateral
shift, and so we have the following statement: If T is an injective subnormal bilateral
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shift, then τ(σ(N)) = C∗(T ). In addition, by modifying the argument for the proof
of Corollary 11, we have the following analogous result: τ(σ(N))/K is isometrically
∗-isomorphic to C(σap(T )).

5. Several variables

It is natural to ask to what extent the results in the preceding sections hold
in the setting of n variables, where n ≥ 2. In Sections 2, 3 and 4, we derived a
few properties of a subnormal shift using its related measure defined on the closed
unit disc ∆. In this section, we use B to denote the open unit ball of Cn. As a
generalization of the measure dνdθ/2π defined in Section 2, throughout the present
section we consider the measure dµ = dνdσ on the closed unit ball B, where dν
is a Borel probability measure on [0, 1] with the point 1 in the support of ν, and
dσ is the normalized surface area measure on ∂B, the unit sphere of Cn. We let
P 2(µ) denote the closure of the n-variable polynomials in L2(µ). It is well-known
that the monomials form an orthogonal basis in P 2(µ).

Similar to the one-variable case, examples include the Hardy and Bergman spaces
on B. We remark that whenever dν is a Borel probability measure with 1 in the
support of ν, the Hilbert space P 2(dνdσ) consists of functions analytic in B.

It is known from [18, Page 55] that if ζ is a point in B, then the mapping
f 7−→ f(ζ) is a continuous linear functional on H2(B). This functional is called
the evaluation functional of the point ζ. According to the Riesz representation
theorem, there exists a function g in H2(B) such that if 〈, 〉H denotes the inner
product in H2(B), then f(ζ) = 〈f, g〉H for all f in H2(B).

Lemma 12. For every point ζ in B, there exists a function kζ in P 2(µ) such that
〈f, kζ〉 = f(ζ) for all functions f in P 2(µ).

Proof. One can easily check that kζ is given by the formula:

kζ(z) =
∑
α

ζα

‖zα‖
zα

‖zα‖ .

The result of the preceding lemma, along with the idea in the proof of Proposi-
tion 2, enables one to prove the following several-variable analogue of that propo-
sition, and we omit the proof.

Proposition 13. If 0 < R < 1, then there exists a positive constant C, depending
on R and µ, such that for every function f in P 2(µ),

‖f‖2 ≤ C

∫
[R,1]

∫
∂B

|f |2 dσdν.

Since P 2(µ) consists of only analytic functions, we are now ready to prove the
several-variable result analogous to Theorem 4. Before we state and prove the
result, we need a few definitions. For each integer k with 1 ≤ k ≤ n, we let
Tk : P 2(µ) → P 2(µ) be defined by Tkf = zkf for all functions f in P 2(µ). A closed
subspace S of P 2(µ) is said to be invariant if TkS ⊂ S for each k.

Theorem 14. If S1 and S2 are two nontrivial invariant subspaces of P 2(µ), then
S1 and S2 are not orthogonal to each other.

Proof. Our proof for Theorem 4 can be modified to work for this theorem, and
we only point out the modifications needed. If S1 and S2 are invariant and f, g
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are functions in S1 and S2 respectively, then for all multi-indices α and β, the
functions zαf and zβg are orthogonal. This allows us to conclude that for all
continuous functions h on B, ∫

∂B

∫
[0,1]

hfgdνdσ = 0.

When the measure ν has a point mass at 1, it is clear that fg = 0. When the
measure ν does not have a point mass at 1, then one may use Cauchy’s integral
formula [22, 3.2.4, Page 39] for the unit ball to complete the whole argument.

Theorem 14 tells us that there does not exist a nontrivial closed subspace of
P 2(µ) that is reducing for all the operators Tk for 1 ≤ k ≤ n. Hence the C∗-algebra
generated by T1, · · · , Tn and the identity operator I does not have a nontrivial closed
subspace that reduces every operator in the algebra. This result is important for
us to generalize Theorem 10 to the case of several variables, which is one of the
goals in this section. Besides that result, we need to generalize the concept of the
approximate point spectrum of an operator also. For that purpose we digress to
function theory in several variables.

Let 〈, 〉 denote the inner product in Cn; that is, for z = (z1, · · · , zn) and ζ =
(ζ1, . . . , ζn) in Cn, we define 〈z, ζ〉 = z1ζ1 + · · · + znζn. Let us fix a point ζ ∈ ∂B
and define a polynomial G : B → C by

G(z) =
1 + 〈z, ζ〉

2
.

For every positive integer k, define

ck =
∫
B

|G(z)|k dµ(z).

We now want to obtain a lower estimate on ck. Let 0 < s < 1 and Es = {z ∈ B :
|G(z)| > s}. Thus

ck ≥
∫
Es

|G(z)|k dµ(z) ≥ skµ(Es).

Since s < 1, the set Es contains a neighborhood of ζ in B and so µ(Es) > 0 and
ck > 0. This allows us to define Gk(z) = |G(z)|k/ck. By our definition of ck, we
have

∫
B
Gk(z) dµ(z) = 1. In fact the sequence {Gk} behaves like an approximate

identity as indicated as follows.

Lemma 15. Suppose that ζ is a point in ∂B. Corresponding to ζ, we define the
polynomial G(z) and a sequence of positive numbers {ck} as in the above. If g is a
continuous function on B, then

g(ζ) = lim
k→∞

∫
B

g(z)
|G(z)|k
ck

dµ(z).

Proof. Since g is uniformly continuous on B, then for any ε > 0, there exists δ > 0
such that if z, η ∈ B and |z − η| < δ, then |g(z) − g(η)| < ε. We now define
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Ω = {z ∈ B : |z − ζ| < δ}, and perform the following calculations:

|g(ζ)−
∫
B

g(z)Gk(z) dµ(z)|

=

(∫
B\Ω

+
∫

Ω

)
|g(ζ)− g(z)|Gk(z) dµ(z)

≤ 2 max{|g(z)| : z ∈ B} 1
ck

∫
B\Ω

|G(z)|k dµ(z) + ε.

Now one can use the fact that |G(z)| < 1 when z ∈ B\{ζ} and G(ζ) = 1 to complete
the whole proof.

With Lemma 15, we now generalize Proposition 3, by using the following defini-
tion given by J. Bunce [4, Definition 1]: If B(H) is the algebra of all bounded linear
operators on a Hilbert space H , then for commuting operators A1, A2, · · · , An in
B(H), their joint approximate spectrum is defined by

{(ζ1, · · · , ζn) ∈ Cn : B(H)(A1 − ζ1) + · · ·+B(H)(An − ζn) 6= B(H)}.
We use a(A1, · · · , An) to denote this joint approximate spectrum. As a natural
generalization of the approximate point spectrum of a single operator, A. T. Dash
[7, Proposition 3.2] has the following formulation: (ζ1, · · · , ζn) is in a(A1, · · · , An)
if and only if there exists a sequence of unit vectors {fm} in H such that for each
fixed integer k, the sequence (Ak − ζk)fm → 0 in norm, as m→∞.

Back to our setting, the operators T1, · · · , Tn on P 2(µ) commute, and we can
use Dash’s proposition to prove the following.

Proposition 16. a(T1, · · · , Tn) = ∂B.

Proof. In this proof we use z to denote the variable (z1, · · · , zn) ∈ Cn. If ζ =
(ζ1, · · · , ζn) is a point in ∂B, then Lemma 15 provides us with a polynomial G(z)
so that for each integer m with 1 ≤ m ≤ n,

lim
k→∞

∫
B

|zm − ζm|2
∣∣∣∣G(z)k√

c2k

∣∣∣∣2 dµ(z) = 0.

If we define fk(z) = G(z)k/
√
c2k, then the above limit can be rewritten as

‖(Tm − ζm)fk‖ → 0. Since fk is a unit vector in P 2(µ), Dash’s proposition im-
plies that ∂B ⊂ a(T1, · · · , Tn).

On the other hand, if ζ = (ζ1, · · · , ζn) is a point in B and f is a function in
P 2(µ), then for any R with 0 < R < 1,

‖(T1 − ζ1)f‖2 + · · ·+ ‖(Tn − ζn)f‖2

≥
∫

[R,1]

∫
∂B

(|z1 − ζ1|2 + · · ·+ |zn − ζn|2)|f |2 dµ(z).

We can choose R so that ζ is in the open set RB, and thus there exists a positive
δ such that (|z1 − ζ1|2 + · · ·+ |zn − ζn|2) ≥ δ whenever (z1, · · · , zn) ∈ B\RB. This
observation, along with Proposition 13, implies that there exists a positive constant
C such that

‖(T1 − ζ1)f‖2 + · · ·+ ‖(Tn − ζn)f‖2 ≥ δ

C
‖f‖2.

Our result follows from another application of Dash’s proposition.
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We now digress to proving the compactness of the operator T ∗mTm − TmT
∗
m for

every m with 1 ≤ m ≤ n. Without loss of generality, it suffices to prove the case
when m = 1. For that we can just show that T ∗1 T1−T1T

∗
1 ( zα

‖zα‖ ) → 0, as |α| → +∞,
because it follows that T ∗1 T1 − T1T

∗
1 is a norm limit of finite-rank operators.

To show that limit is zero, we now proceed as follows. If α = (α1, · · · , αn) and
β = (β1, · · · , βn) are two multi-indices, then we use α±β to denote the multi-index
(α1±β1, · · · , αn±βn). In addition, we use e to denote the multi-index (1, 0, · · · , 0),
and use wα to denote the weight wα = ‖zα+e‖/‖zα‖. One can check that

T1
zα

‖zα‖ = wα
zα+e

‖zα+e‖ .
By using this identity, along with the definition of the inner product, we have

T ∗1

(
zα

‖zα‖
)

=

{
wα−e zα−e

‖zα−e‖ if α1 6= 0,
0 if α1 = 0.

From this equation we deduce that

T ∗1 T1 − T1T
∗
1

(
zα

‖zα‖
)

=

{
(w2

α − w2
α−e)

zα

‖zα‖ if α1 6= 0,
w2
α

zα

‖zα‖ if α1 = 0.

To continue the proof we need an estimate on wα, by using the following identity
[22, Proposition 1.4.9, Page 16]:∫

∂B

|zα|2 dσ(z) =
(n− 1)!α!

(n− 1 + |α|)! .
With this formula we can compute wα:

w2
α =

∫
r2|α|+2dν(r)

∫ |zα+e|2dσ(z)∫
r2|α|dν(r)

∫ |zα|2dσ(z)
=

(α1 + 1)
∫
r2|α|+2dν(r)

(n+ |α|) ∫ r2|α|dν(r).
Then we observe that( ∫

r2|α|dν
)2

=
( ∫

r|α|+1r|α|−1dν
)2

≤
∫
r2|α|+2 dν

∫
r2|α|−2 dν.

From this observation, we deduce that the function ρ defined by

ρ(|α|) =
∫
r2|α|+2 dν∫
r2|α|dν

is an increasing function of |α|. Since ρ(|α|) ≤ 1 for all α, the limit of ρ(|α|) exists
as |α| → ∞. With this limit, one can now show that

w2
α − w2

α−e =
α1 + 1
n+ |α|ρ(|α|) − α1

n+ |α| − 1
ρ(|α| − 1)

goes to zero, as |α| → ∞. This completes the whole proof.
As in the one-variable case that we discussed in Section 3, the compactness of

T ∗1 T1 − T1T
∗
1 has an important corollary in the theory of C∗-algebras. To explain

that, we let U denote the C∗-algebra generated by the operators T1, · · · , Tn and the
identity operator I on P 2(µ). We also let K denote the ideal of compact operators
on P 2(µ). Note that U contains the nonzero compact operator T ∗1 T1 − T1T

∗
1 , and

moreover by Theorem 14, U is irreducible. This allows us to use [9, Corollary 4.1.10,
Page 97], as in the proof of Lemma 9, to conclude that U contains the whole ideal
K. It is then natural to ask what the quotient algebra U/K is like. We identify
this quotient algebra in the next theorem. The idea of its proof comes from N. P.
Jewell [16, Corollary 4]who has shown that the theorem holds for the case when
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P 2(µ) is the Hardy space. We now generalize his result and use C(∂B) to denote
the algebra of continuous functions on the ∂B.

Theorem 17. U/K is isometrically ∗-isomorphic to the algebra C(∂B).

Proof. Clearly the C∗-algebra U/K is generated by commuting elements T1 +
K, · · · , Tn+K and I+K. Since each T ∗mTm−TmT ∗m is compact, Tm+K is normal
in U/K, it follows that U/K is a commutative C∗-algebra. The maximal ideal space
of U/K is homeomorphic to the joint spectrum σj of T1 + K, · · · , Tn + K; see,
for example, [13, Theorem 1.4, Page 68]. If M denotes the maximal ideal space of
U/K, then that joint spectrum σj is {(ψ(T1 +K), · · · , ψ(Tn+K)) ∈ Cn : ψ ∈M},
by definition.

By a character on a C∗-algebra with identity I, we mean a multiplicative linear
functional ρ such that ρ(I) = 1. If ρ is a character on U , then ker ρ is a closed ideal
in U , and the quotient U/ kerρ is a vector space isomorphic to C. Thus U/ kerρ is
a vector space of dimension one, and it must be spanned by I + ker ρ. From this
we deduce that kerρ is irreducible because U is. Since ker ρ itself is a C∗−algebra
and it contains the nonzero compact operator T ∗1 T1 − T1T

∗
1 , it must contain K, by

[9, Corollary 4.1.10, Page 97].
If π denotes the quotient map from U onto U/K, then from our discussion in

the last paragraph we arrive at the following conclusion: For every ψ in M , the
composition ψ ◦π is a character ρ on U , and conversely every character ρ on U can
be written as ψ ◦ π for some ψ in M . It follows that

σj = {(ψ ◦ π(T1), · · · , ψ ◦ π(Tn)) ∈ Cn : ψ ∈M}
= {(ρ(T1), · · · , ρ(Tn)) ∈ Cn : ρ is a character on U}.

Along with Proposition 16, the whole proof is completed by the following result of
J. Bunce [4, Corollary 4]: If A1, · · · , An are commuting hyponormal operators on a
Hilbert space H, then their joint approximate spectrum a(A1, · · · , An) is exactly the
collection of points (ρ(A1), · · · ρ(An)) such that ρ is any character on the C∗-algebra
generated by A1, · · · , An and the identity operator I.

Theorem 17 gives us a nice description for the C∗-algebra U , and now we want to
give another description. Before we do that we need the following definitions. Let
P denote the orthogonal projection from L2(µ) onto P 2(µ), and let κ denote the
support of the measure µ. We also use C(κ) to denote the algebra of all continuous
functions on κ, and use ‖ · ‖∞ to denote the supremum norm over κ. If φ is a
function in C(κ), then we can define the Toeplitz operator Tφ : P 2(µ) → P 2(µ) by
Tφf = P (φf). It is obvious that the operator norm ‖Tφ‖ satisfies ‖Tφ‖ ≤ ‖φ‖∞.
The Stone-Weierstrass theorem shows that if φ ∈ C(κ), then Tφ is in U . Thus if
we use τ(κ) to denote the C∗-algebra generated by all Toeplitz operators Tφ with
φ ∈ C(κ), then we have the following generalization of Theorem 10.

Corollary 18. U = τ(κ).

Furthermore, a review of the proof for Theorem 10 gives us the following result:

Corollary 19. τ(κ) = {Tu +A : u ∈ C(κ) and A is compact}.
Note that if P 2(µ) is the Hardy space, then κ = ∂B, and if P 2(µ) is the Bergman

space, then κ = B. Coburn [5, Theorem 1] has shown that in the case when P 2(µ)
is the Hardy space, then τ(∂B)/K can be identified with the algebra C(∂B), and
in additionwhen P 2(µ) is the Bergman space, then τ(B)/K can be identified again
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with the same algebra C(∂B). Theorem 17 unifies the proofs for both of these
results and generalizes them to a subnormal setting.
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