Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$C^*$-algebras generated by a subnormal operator


Authors: Kit C. Chan and Zeljko Cuckovic
Journal: Trans. Amer. Math. Soc. 351 (1999), 1445-1460
MSC (1991): Primary 47B20, 32A37, 46L05; Secondary 46E20, 47A13, 47B37
DOI: https://doi.org/10.1090/S0002-9947-99-02389-2
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the functional calculus for a normal operator, we provide a result for generalized Toeplitz operators, analogous to the theorem of Axler and Shields on harmonic extensions of the disc algebra. Besides that result, we prove that if $T$ is an injective subnormal weighted shift, then any two nontrivial subspaces invariant under $T$ cannot be orthogonal to each other. Then we show that the $C^*$-algebra generated by $T$ and the identity operator contains all the compact operators as its commutator ideal, and we give a characterization of that $C^*$-algebra in terms of generalized Toeplitz operators. Motivated by these results, we further obtain their several-variable analogues, which generalize and unify Coburn's theorems for the Hardy space and the Bergman space of the unit ball.


References [Enhancements On Off] (What's this?)

  • 1. S. Axler and A. Shields, Algebras generated by analytic and harmonic functions, Indiana Univ. Math. J. 36 (1987), 631 - 638. MR 88h:46102
  • 2. H. Bercovici, C. Foias, and C. M. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conf. Ser. in Math., no. 56, Amer. Math. Soc., Providence, R. I. 1985. MR 87g:47091
  • 3. J. Bunce, Characters on singly generated $C^*$-algebras, Proc. Amer. Math. Soc. 25 (1970), 297 - 303. MR 41:4258
  • 4. J. Bunce, The joint spectrum of commuting nonnormal operators, Proc. Amer. Math. Soc. 29 (1971), 499 - 505. MR 44:832
  • 5. L. A. Coburn, Singular Integral Operators and Toeplitz Operators on Odd Spheres, Indiana Univ. Math. J. 23 (1973), 433 - 439. MR 48:957
  • 6. J. B. Conway, Subnormal Operators, Research Notes in Mathematics 51, Pitman, London, 1981. MR 83i:47030
  • 7. A. T. Dash, Joint Spectra, Studia Math. 45 (1973), 225 - 237. MR 49:1156
  • 8. P. L. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1970. MR 42:3552
  • 9. J. Dixmier, C*-algebras, North-Holland, New York, 1977. MR 56:16388
  • 10. R. E. Frankfurt, Subnormal weighted shifts and related function spaces, J. Math. Anal. Appl. 52 (1975), 471-489. MR 58:2407
  • 11. R. E. Frankfurt, Subnormal weighted shifts and related function spaces II, J. Math. Anal. Appl. 55 (1976), 2-17. MR 58:2408
  • 12. R. E. Frankfurt, Function spaces associated with radially symmetric measures, J. Math. Anal. Appl. 60 (1977), 502-541. MR 58:22569
  • 13. T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1984.
  • 14. P. R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Second Edition, Chelsea, New York, 1957.
  • 15. P. R. Halmos, A Hilbert Space Problem Book, Second Edition, Springer-Verlag, New York, 1982. MR 84e:47001
  • 16. N. P. Jewell, Multiplication by the coordinate functions on the Hardy space of the unit sphere in $\mathbf{C}^n$, Duke Math. J. 44 (1977), 839 - 851. MR 57:3904
  • 17. G. E. Keough, Subnormal operators, Toeplitz operators, and spectral inclusion, Trans. Amer. Math. Soc. 263 (1981), 125-135. MR 81k:47033
  • 18. S. G. Krantz, Function Theory of Several Complex Variables, John Wiley and Sons, New York, 1982. MR 84c:32001
  • 19. A. Lubin, Weighted shifts and products of subnormal operators, Indiana Univ. Math. J. 26 (1977), 839 - 845. MR 56:6448
  • 20. H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York, 1973. MR 51:3924
  • 21. W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill, New York, 1987. MR 88k:00002
  • 22. W. Rudin, Function Theory in the Unit Ball of $\mathbf{C}^n$, Springer-Verlag, New York, 1980. MR 82i:32002
  • 23. D. Sarason, The $H^p$ spaces of an annulus, Memoirs of the Amer. Math. Soc., Number 56, 1965. MR 32:6256
  • 24. A. L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory (ed. C. Pearcy), Math. Surveys 13, Amer. Math. Soc., Providence, R. I., 1974, pp. 49-128. MR 50:14341

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 47B20, 32A37, 46L05, 46E20, 47A13, 47B37

Retrieve articles in all journals with MSC (1991): 47B20, 32A37, 46L05, 46E20, 47A13, 47B37


Additional Information

Kit C. Chan
Affiliation: Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403-0221
Email: kchan@bgnet.bgsu.edu

Zeljko Cuckovic
Affiliation: Department of Mathematics, University of Toledo, Toledo, Ohio 43606-3390
Email: zcuckovi@math.utoledo.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02389-2
Keywords: $C^*$-algebras, subnormal operators, weighted shifts, functional calculus, analytic functions, joint spectrum, Toeplitz operators
Received by editor(s): December 4, 1995
Received by editor(s) in revised form: March 4, 1998
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society