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THE DIAGONAL SUBRING
AND THE COHEN-MACAULAY PROPERTY

OF A MULTIGRADED RING

EERO HYRY

Abstract. Let T be a multigraded ring defined over a local ring (A, m). This
paper deals with the question how the Cohen-Macaulay property of T is re-
lated to that of its diagonal subring T∆. In the bigraded case we are able to
give necessary and sufficient conditions for the Cohen-Macaulayness of T . If
I1, . . . , Ir ⊂ A are ideals of positive height, we can then compare the Cohen-
Macaulay property of the multi-Rees algebra RA(I1, . . . , Ir) with the Cohen-
Macaulay property of the usual Rees algebra RA(I1 · · · Ir). We also obtain a
bound for the joint reduction numbers of two m-primary ideals in the case the
corresponding multi-Rees algebra is Cohen-Macaulay.

0. Introduction

Let (A, m) be a local ring. Let T =
⊕

n∈Nr Tn be a multigraded ring finitely gen-
erated over A by elements in degrees (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). In this paper we
are interested in studying the relationship between the Cohen-Macaulay property of
T and that of its diagonal subring T∆ which is the graded ring T∆ =

⊕
n∈N Tn,...,n.

The geometric object associated to a multigraded ring T is the corresponding multi-
projective scheme ProjT constructed by means of multihomogeneous localizations.
It is easy to see that ProjT is isomorphic to the usual projective scheme ProjT∆.
From this point of view it is natural to expect that the homological properties of
T and T ∆ are closely related. Classically T is the multihomogeneous coordinate
ring of a multiprojective variety V defined over a field k and contained in some
multiprojective space Pn1

k × · · · × Pnr

k . The ring T ∆ is then the homogeneous coor-
dinate ring of the image of V in the Segre imbedding Pn1

k × · · · × Pnr

k → PN
k where

N = (n1 + 1) · · · (nr + 1)− 1.
A class of multigraded rings of special interest to us is that of multi-Rees al-

gebras. Let I1, . . . , Ir ⊂ A be ideals of positive height. The multi-Rees algebra
RA(I1, . . . , Ir) = A[I1t1, . . . , Irtr] where t1, . . . , tr are indeterminates. Geometri-
cally multi-Rees algebras arise by successive blowing up: Zj = ProjRA(I1, . . . , Ij)
is for all j = 1, . . . , r the blow-up of Zj−1 = ProjRA(I1, . . . , Ij−1) along the closed
subscheme determined by the sheaf of ideals IjOZj−1 . The diagonal subring is
now the usual Rees algebra RA(I1 · · · Ir) of the product I1 · · · Ir. We shall show in
Corollary 2.10 of this paper that if RA(I1, . . . , Ir) is Cohen-Macaulay, then so is also
RA(I1 · · · Ir). This is a consequence of our main Theorem 2.5, where we give nec-
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essary and sufficient conditions for the Cohen-Macaulayness of a general bigraded
ring T with negative a-invariants a1(T ) and a2(T ). In the case T = RA(I, J)
where I, J ⊂ A are ideals of positive height, these conditions mean that the Cohen-
Macaulay property of T can be characterized in terms of the local cohomologies
of the ideals IpRA(IJ), JpRA(IJ) ⊂ RA(IJ) (p ∈ N). We show by example that
the converse of Corollary 2.10 does not hold. In Theorem 2.13 we consider condi-
tions under which the Cohen-Macaulayness of RA(IJ) implies that of RA(Ik, J l)
for k, l � 0. Our results generalize the results of [6] and [7], where the properties
of multi-Rees algebras were studied under the assumption that the ideals I1, . . . , Ir

are all powers of the same ideal.
As a classical application of Theorem 2.5 we consider a ring T = S/I where

S = A[X1, . . . , Xr, Y1, . . . , Ys] is a polynomial ring defined over a local Cohen-
Macaulay ring A and I ⊂ S is a bihomogeneous ideal. Suppose that I can be
generated by forms of bidegree (d, e) with d, e > 0 and that ht I < min(r/d, s/e).
It turns out in Theorem 2.14 that if T is Cohen-Macaulay, then also the diagonal
ring T∆ is Cohen-Macaulay. This problem has recently been investigated by Trung,
Simis and Valla in the case A = k is a field and T is a Rees algebra of a homogeneous
ideal in k[X1, . . . , Xr] (cf. [19]).

Recall that if I ⊂ A is an ideal, an ideal J ⊂ I is said to be a reduction of I if
In+1 = JIn for n � 0. The reduction number rJ (I) with respect to J is the least
integer n satisfying this condition. Reductions were first defined in [15] and have
proved important in finding out conditions which make a usual Rees algebra Cohen-
Macaulay. The concept of a reduction of an ideal can be generalized to the case of
several ideals. Rees introduced in [17] the notions of complete and joint reductions.
More general definitions have later been given in [11]. Let I, J ⊂ A be ideals. A
set K = {a1, . . . , aλ, b1, . . . , bλ} where a1, . . . , aλ ∈ I and b1, . . . , bλ ∈ J , is termed
a complete reduction of I and J if (IJ)n+1 = (a1b1, . . . , aλbλ)InJn for n � 0. If
the residue field of A is infinite, there exists complete reductions with λ = l(IJ)
where l(IJ) denotes the analytic spread of IJ ([16]). Let µ + ν = λ. Consider a
partition of the set {1, . . . , λ} into two disjoint subsets {i1, . . . , iµ} and {j1, . . . , jν}.
The subset {ai1 , . . . , aiµ , bj1 , . . . , bjν} ⊂ K then forms a joint reduction of I and J

of type (µ, ν) meaning that (IJ)n+1 = (ai1 , . . . , aiµ)InJn+1 + (bj1 , . . . , bjν )In+1Jn

for n � 0. We call the smallest integer n satisfying this condition for all partitions
{i1, . . . , iµ} ∪ {j1, . . . , jν} of {1, . . . , λ} the joint reduction number of I and J of
type (µ, ν) with respect to K and denote it by rµ,ν

K (I, J). Suppose now that the
ideals I and J are m-primary and that λ = dim A. We can prove in Corollary 3.4
that if RA(I, J) is Cohen-Macaulay, then rµ,ν

K (I, J) ≤ max(µ, ν)− 1 for all µ, ν ≥ 1
with µ + ν = dim A. This generalizes the well-known result saying that if I ⊂ A
is an m-primary ideal such that RA(I) is Cohen-Macaulay, then rJ (I) ≤ dim A− 1
for every dim A-generated reduction J ⊂ I (cf. [21, Theorem 4.2]).

In the two-dimensional case Verma investigated in [25] the Cohen-Macaulay
property of multi-Rees algebras of m-primary ideals under the assumption that
the joint reduction numbers of the ideals are zero. Later this situation was con-
sidered also in [8]. Corollary 3.4 now implies that the sufficient condition given in
[8] is also necessary: If A is a local Cohen-Macaulay ring of dimension two and
I, J ⊂ A are m-primary ideals, then RA(I, J) is Cohen-Macaulay if and only if the
usual Rees algebras RA(I), RA(J) are Cohen-Macaulay and the mixed multiplicity
e1(I, J) = l(A/IJ)− l(A/I)− l(A/J) (cf. Corollary 3.5).
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1. Preliminaries

We begin by recalling some basic facts about multigraded rings and modules.
For more details we refer to [3] (cf. also [1] and [9]). Let T =

⊕
n∈Zr Tn be an

r-graded ring defined over a ring A = T0. We always assume that all rings are
Noetherian. The ring T has certain subrings important to us. The diagonal subring
of T is the graded ring T ∆ =

⊕
n∈Z Tn,...,n. For any j ∈ {1, . . . , r}, there is an

r − 1-graded subring T
(j)

...,0,... =
⊕

nj=0 Tn. If M is an r-graded T -module, we then
have a graded T∆-module M∆ =

⊕
n∈Z Mn,...,n and r − 1-graded T...,0,...-modules

M...,k,... =
⊕

nj=k Mn (k ∈ Z). When T is Nr-graded and A is local with the
maximal ideal m, T has a unique homogeneous maximal ideal M = m⊕

⊕
n 6=0 Tn.

The homogeneous maximal ideals of T ∆ and T...,0,... are then M∆ and M...,0,...

respectively.
If A ⊂ T is a homogeneous ideal, the local cohomology functors Hi

A(·) are defined
in the category of r-graded T -modules as usual. As T -modules r-graded local
cohomology modules of course coincide with the usual ones. In many occasions it is
useful to consider the ring T endowed with a different grading. Local cohomology
modules behave well under a change of grading. To put this more precisely, given
a homomorphism ϕ : Zr → Zq, set

Mϕ =
⊕

m∈Zq

 ⊕
ϕ(n)=m

Mn


for any r-graded T -module M . Then T ϕ is a q-graded ring and Mϕ a q-graded
T ϕ-module. We now have the result that (Hi

A(M))ϕ = Hi
Aϕ(Mϕ). To see this, it

is enough to note that (H i
A(·))ϕ and Hi

Aϕ(·ϕ) are both universal δ-functors, which
coincide if i = 0. We are often interested in vanishing of local cohomology. It is
then useful to observe the following simple fact:

1.1. Lemma. Let T be an r-graded ring defined over a local ring (A, m). Set
S = T...,0,... and N = M...,0,.... Consider TN as a graded ring defined over the local
ring SN. Then [Hi

AN
(TN)]k = 0 if and only if [Hi

A(T )]n = 0 for all n ∈ Zr with
nj = k.

Proof. The above mentioned result implies that if T is considered as a graded S-
algebra, then [Hi

A(T )]k =
⊕

nj=k[Hi
A(T )]n is a graded S-module for every k ∈ Z.

This implies the claim, since [Hi
AN

(TN)]k = ([H i
A(T )]k)N.

If T is Nr-graded and can be finitely generated over A by elements in degrees
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1), we call T standard. Suppose from now on that T
is standard. The irrelevant ideal of T is T + =

⊕
n1,...,nr>0 Tn. Also set T+

j =⊕
nj>0 Tn for all j = 1, . . . , r. Let ProjT denote the set of all homogeneous prime

ideals P ⊂ T which do not contain T+. Consider ProjT as a topological space with
closed subsets V+(I) = {P ∈ ProjT |P ⊃ I} where I ⊂ T is a homogeneous ideal.
We give ProjT a scheme structure analogously to the usual graded case by using
homogeneous localizations

T(P ) =
{

a

f
|a, f ∈ Tn, f /∈ P,n ∈ Nr

}
(P ∈ ProjT ).

We call T the r-projective scheme corresponding to T . The theory of multiprojective
schemes is similar to that of projective schemes, which can be found in [4]. We
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therefore mainly list here some most important facts. Set Z = ProjT . There is
a canonical projection Z → Spec A, which is a proper morphism. If M is an r-
graded T -module, we have the associated quasi-coherent sheaf M of OZ -modules.
The quasi-coherent sheaf corresponding to T (n) is invertible for every n ∈ Zr.
We denote it by OZ(n). Moreover, we have OZ(m + n) = OZ(m) ⊗ OZ(n) for
all m,n ∈ Zr. Multiprojective schemes are projective: if Z∆ = ProjT∆, the
inclusion T ∆ → T induces an isomorphism f : Z → Z∆ such that f∗(OZ∆(n)) =
OZ(n, . . . , n) for all n ∈ Z. In the next lemma we consider the dimension of Z.

1.2. Lemma.

1) We have dim Z = sup{dim T/P |P ∈ Z ∩Min T }− r. It follows, in particular,
that if dim T

(j)
...,0,... < dim T for all j = 1, . . . , r, then dim Z = dim T − r.

2) If T is a catenary domain and A is local, then dimOZ,P = dim Z for all closed
points P ∈ Z.

Proof. Let P ∈ Z be a closed point. The projection Z → Spec A being proper,
P0 = P ∩ A is a closed point of Spec A. Then (T/P )0 is a field. Moreover, we
have dim ProjT/P = 0. This implies that dimT/P = r: it is easy to check that
0 ⊂ S+

1 ⊂ S+
1 + S+

2 ⊂ · · · ⊂ S+
1 + · · · + S+

r is a maximal chain of homogeneous
prime ideals of S = T/P . Any maximal chain of homogeneous prime ideals of T
starting from a minimal prime P0 ∈ Z is then of type P0 ⊂ · · · ⊂ Pn ⊂ · · · ⊂ Pn+r

where Pn is a closed point of Z. As dim Z = sup{htP |P ∈ Z}, the formula
dim Z = sup{dim T/P |P ∈ Z ∩ Min T } − r follows. Since T+

1 · · ·T +
r ⊂ T+, the

condition dim T/T +
j < dim T (j = 1, . . . , r) means that Z contains all minimal

primes P of T with dim T/P = dim T . Then dimZ = dim T − r proving 1). In the
case of 2) we always have above P0 = 0 and Pn+r = M. Since T is catenary, this
implies for any closed point P ∈ Z that dimOZ,P = htP = dim T − r = dim Z.

We can look at the scheme Z also from another point of view. Take j ∈ {1, . . . , r}
and let Y denote the r − 1-projective scheme ProjT (j)

...,0,.... For every k ∈ N, let Tk

be the quasi-coherent OY -module corresponding to the r−1-graded T...,0,...-module
T...,k,.... Then T =

⊕
k≥0 Tk is a quasi-coherent graded OY -algebra so that we have

an associated projective scheme Proj T . Recall that Proj T can be constructed
by glueing together the schemes Proj

⊕
k≥0(T...,k,...)(b) where b ∈ T1,...,1,0,1,...,1.

It is now not difficult to see that it is possible to identify Proj T with Z. The
corresponding canonical invertible sheaf on Z is OZ(0, . . . , 0, 1, 0, . . . , 0). Moreover,
if g : Z → Y is the canonical projection, we have

OZ(n1, . . . , nj−1, 0, nj+1, . . . , nr) = g∗(OY (n1, . . . , nj−1, nj+1, . . . , nr))

for n1, . . . , nj−1, nj+1, . . . , nr ∈ Z. If M is an r-graded T -module and Mk is
the quasi-coherent OY -module corresponding to the r − 1-graded T...,0,...-module
M...,k,... (k ∈ Z), then M is the quasi-coherent OZ -module corresponding to the
graded OY -module

⊕
k∈Z Mk. There is for all n ∈ Zr a canonical homomorphism

Mnj (n1, . . . , nj−1, nj+1, . . . , nr) → g∗(M(n)).

Let a ⊂ A be an ideal. We want to compare the multigraded local cohomology
with respect to the ideal (a, T +) ⊂ T with the sheaf cohomology with supports in
E = V+(aT ) ⊂ Z. To this purpose we need a multigraded variant of the so called
Sancho de Salas sequence ([14]). First we prove the following lemma:
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1.3. Lemma. Let I be an injective r-graded T -module and let I be the correspond-
ing quasi-coherent sheaf of OZ-modules. Then I is an injective OZ-module.

Proof. It is enough to show that I(P ) is an injective T(P )-module for all P ∈ Z (cf.
[5, Chapter II, Proposition 7.17]). For any T -module N , set

N〈P 〉 =
{

x

f
|x ∈ N, f ∈ T \ P is homogeneous

}
.

It is easy to check that I〈P 〉 is an injective r-graded T〈P 〉-module. The claim now
follows from the fact that the category of r-graded T〈P 〉-modules is equivalent to the
category of T(P )-modules. The equivalence is given by M 7→ M0. Indeed, according
to the r-graded version of [9, Proposition (12.17)] T〈P 〉 ∼= T(P )[t1, . . . , tr, t−1

1 , . . . , t−1
r ]

where t1, . . . , tr are indeterminates. Then, for any r-graded T〈P 〉-module M , we
have M ∼= M0[t1, . . . , tr, t−1

1 , . . . , t−1
r ].

1.4. Theorem. Let T be a standard r-graded ring defined over a ring A and let
a ⊂ A be an ideal. Let M be an r-graded T -module. With the preceding notation,
there exists an exact sequence

· · · → H i
(a,T+)(M) →

⊕
n∈Zr

Hi
a(Mn) →

⊕
n∈Zr

Hi
E(Z,M(n)) → · · ·

of r-graded T -modules. Moreover, if j ∈ {1, . . . , r} and S = T
(j)

...,0,..., we have a
commutative diagram of r-graded T -modules

· · · // Hi
(a,T+)(M) //

⊕
n∈Zr Hi

a(Mn) //
⊕

n∈Zr Hi
E(Z,M(n)) // · · ·

· · · // Hi
(a,S+)(M) //

OO

⊕
n∈Zr Hi

a(Mn) //

OO

⊕
n∈Zr Hi

F (Y,Mnj (n̂)) //

OO

· · ·

where F = V+(aS), n̂ = (n1, . . . , nj−1, nj+1, . . . , nr) and the homomorphisms

H i
F (Y,Mnj (n̂)) → Hi

E(Z,M(n))

are composites

H i
F (Y,Mnj (n̂)) → Hi

F (Y, g∗(M(n))) → H i
E(Z,M(n))

of canonical homomorphisms.

Proof. The construction of the multigraded Sancho de Salas sequence is analogous
to that of the usual Sancho de Salas sequence. We recall this construction following
an idea sketched in [14, p. 2]. Set C = V (T +) ⊂ Spec T and U = Spec T \ C.
Let 0 → M → I• be an r-graded injective resolution of M . As H1

C(Spec T, Ĩp) =
H1

T+(Ip) = 0 for all p ∈ N we obtain an exact sequence

0 → ΓC(Spec T, Ĩ•) → I• → Γ(U, Ĩ•) → 0

where ΓC(Spec T, Ĩ•) = H0
T+(I•). There is an affine morphism h : U → Z taking

a prime ideal P ∈ U to its homogenization P ∗ ∈ Z. If N is an r-graded T -module
and N the corresponding quasi-coherent OZ-module, we clearly have h∗(Ñ|U ) =⊕

n∈Zr N (n). Therefore

Γ(U, Ñ) = Γ(Z, h∗Ñ) = Γ

(
Z,
⊕
n∈Zr

N (n)

)
=
⊕
n∈Zr

Γ(Z,N (n)).
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It follows, in particular, that Γ(U, Ñ) is an r-graded T -module. Set Φ(N) =⊕
n∈Zr N (n). This defines an exact functor Φ from the category of r-graded

T -modules to the category of quasi-coherent OZ-modules. So there is an exact
sequence

0 → H0
T+(I•) → I• → Γ(Z, Φ(I•)) → 0

of complexes of r-graded T -modules. Observe that Φ(I•) is a complex of injective
OZ-modules. Indeed, if Ip is the quasi-coherent OZ -module corresponding to Ip

(p ∈ N), we know from Lemma 1.3 that Ip is injective. Then Ip(n) is injective for
all n ∈ Zr so that also Φ(Ip) =

⊕
n∈Zr Ip(n) is injective. In the derived category of

the category of r-graded T -modules the above exact sequence then gives an exact
triangle

RH0
T+(M) → M → RΓ(Z, Φ(M)) → RH0

T+(M)[1].

Since H0
aH0

T+ = H0
(a,T+) and H0

aΓ(Z, ·) = ΓE(Z, ·), we obtain the desired sequence
by applying the functor RH0

a and taking cohomology.
In order to prove the second claim we first note that by setting Ψ(N) =⊕
n∈Zr Nnj (n̂) for every r-graded T -module N , we obtain an exact functor Ψ from

the category of r-graded T -modules to the category of quasi-coherent OY -modules.
The module Γ(Y, Ψ(N)) has an obvious structure of an r-graded T -module. More-
over, the canonical homomorphisms Nnj (n̂) → g∗(N (n)) induce a morphism of
functors η : Ψ → g∗Φ such that there is a commutative diagram

N // Γ(Z, Φ(N))

N //

id

OO

Γ(Y, Ψ(N))

Γη

OO

of r-graded T -modules.
Now observe that by writing M =

⊕
k∈Z M...,k,... and I• =

⊕
k∈Z I•...,k,..., we

can consider 0 → M → I• as an H0
S+ -acyclic resolution of M in the category of

r − 1-graded S-modules. Moreover, by using the Sancho de Salas sequence, we see
that Hi

F (Y, Ψ(Ip)) = 0 for i > 0 and p ∈ N. When a = 0, this gives that also
Hi(Y, Ψ(Ip)) = 0 for i > 0 and p ∈ N.

It follows that there is a commutative diagram

0 // H0
T+(I•) // I• // Γ(Z, Φ(I•)) // 0

0 // H0
S+(I•) //

OO

I•

OO

// Γ(Y, Ψ(I•)) //

OO

0

of complexes of r-graded T -modules. This means that in the derived category we
get a morphism of triangles

RH0
(a,T+)(M) // RH0

a(M) // RΓE(Z, Φ(M)) // RH0
(a,T+)(M)[1]

RH0
(a,S+)(M) //

OO

RH0
a(M) //

OO

RΓF (Y, Ψ(M)) //

Rθ

OO

RH0
(a,S+)(M)[1]

OO
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where ΓF = ΓF (Y, ·), ΓE = ΓE(Z, ·) = ΓF g∗ and

Rθ : (RΓF )Ψ = R(ΓF Ψ) → R(ΓEΦ) = (RΓE)Φ

is the morphism of functors induced by θ = ΓF η. By taking the cohomology we
obtain a diagram of desired type. It remains to check that the resulting homomor-
phisms H i(Rθ) : Hi

F (Y, Ψ(M)) → Hi
E(Z, Φ(M)) factor in the right way.

Consider the commutative diagram

(RΓF )Ψ
(RΓF )η

// (RΓF )g∗Φ // (RΓF )(Rg∗)Φ

ΓF Ψ
ΓF η

//

OO

ΓF g∗Φ //

OO

R(ΓF g∗)Φ

where ΓF Ψ → (RΓF )Ψ = R(ΓF Ψ) and ΓF g∗Φ → R(ΓF g∗)Φ = R(ΓF g∗Φ) are
canonical morphisms of functors. As Rθ is the unique morphism of functors
(RΓF )Ψ → R(ΓF g∗)Φ making the above diagram commutative, we see that it
is equal to the composition

(RΓF )Ψ → (RΓF )g∗Φ → (RΓF )(Rg∗)Φ = R(ΓF g∗)Φ.

The cohomology maps corresponding to (RΓF )g∗Φ(M) → (RΓF )(Rg∗)Φ(M) are
edge homomorphisms of the Grothendieck spectral sequence of the composite func-
tor ΓF g∗. This implies the claim, since these are well-known to be the homomor-
phisms Hi

E(Y, g∗Φ(M)) → Hi
E(Z, Φ(M)).

By choosing a = 0 we immediately obtain

1.5. Corollary. Let T be a standard r-graded ring and let M be an r-graded T -
module. With the preceding notation, we have an exact sequence

0 → H0
T+(M) → M →

⊕
n∈Zr

Γ(Z,M(n)) → H1
T+(M) → 0

and isomorphisms

Hi
T+(M) =

⊕
n∈Zr

Hi−1(Z,M(n)) (i > 1).

We next note that the theorem of Serre about vanishing of sheaf cohomology has
the following multigraded analogue (cf. [12, Lemma (4.2)]):

1.6. Theorem. Let T be a standard r-graded ring and let M be a finitely generated
r-graded T -module. Let the notation be as above. If n1, . . . , nr � 0, we have
Γ(Z,M(n)) = Mn and Hi(Z,M(n)) = 0 for i > 0.

Let A be a ring and let I1, . . . , Ir ⊂ A be ideals. The multi-Rees algebra
RA(I1, . . . , Ir) is the r-graded ring

RA(I1, . . . , Ir) =
⊕
n∈Nr

In1
1 · · · Inr

r .

We often identify RA(I1, . . . , Ir) with the subring A[I1t1, . . . , Irtr] of A[t1, . . . , tr].
Note that RA(I1, . . . , Ir) = RS(IjS) where S = RA(I1, . . . , Ij−1, Ij+1, . . . , Ir). It
follows, in particular, that the scheme Z = ProjRA(I1, . . . , Ir) can be considered as
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the blow-up of the scheme Y = ProjRA(I1, . . . , Ij−1, Ij+1, . . . , Ir) along the closed
subscheme defined by the sheaf of ideals IjOY . The multi-form ring

grA(I1, . . . , Ir) = RA(I1, . . . , Ir)/(I1 · · · Ir)RA(I1, . . . , Ir).

The corresponding diagonal subrings are (RA(I1, . . . , Ir))∆ = RA(I1 · · · Ir) and
(grA(I1, . . . , Ir))∆ = grA(I1 · · · Ir). If ht Ij > 0 (j = 1, . . . , r), it follows easily from
[1, Theorem 4.4.6] that dimRA(I1, . . . , Ir) = dim A + r. If, moreover, A is local,
dim grA(I1, . . . , Ir) = dim A + r − 1.

2. Main results

In this section we want to give necessary and sufficient conditions for the Cohen-
Macaulayness of a standard bigraded ring T =

⊕
p,q≥0 Tp,q defined over a local

ring (A, m). Before proving our main Theorem 2.5 we are going to state several
lemmata.

In the proof of Theorem 2.5 we shall make use of the multigraded Sancho de
Salas sequence (Theorem 1.4). Working with sheaf cohomology on the schemes
ProjT and ProjT·,0, ProjT0,· respectively, we need the following general fact about
vanishing of the higher direct-image sheaves.

2.1. Lemma. Let f : X → Y be a proper morphism of schemes of finite type over
a ring A. Let F be a coherent sheaf on X. Let L be an ample invertible sheaf on
Y . Then Rif∗F = 0 for all i > 0 if and only if Hi(X,F ⊗ f∗L⊗n) = 0 for all i > 0
when n � 0.

Proof. Consider the Leray spectral sequence

Ep,q
2 = Hp(Y, Rqf∗(F ⊗ f∗L⊗n)) ⇒ Hp+q(X,F ⊗ f∗L⊗n).

Note that by the projection formula Rqf∗(F ⊗ f∗L⊗n) = Rqf∗(F)⊗ L⊗n.
Suppose first that there exists n0 ∈ N such that Hi(X,F ⊗ f∗L⊗n) = 0 for all

i > 0 when n > n0. Let i > 0. By the theorem of Serre we can choose n1 ∈ N such
that Hp(Y, Rqf∗(F) ⊗ L⊗n) = 0 for all p > 0 and q < i when n > n1. The Leray
spectral sequence therefore gives

Γ(Y, Rif∗(F)⊗ L⊗n) = Hi(X,F ⊗ f∗L⊗n) = 0

for n > max(n0, n1). This implies that Rif∗F = 0 as wanted. Conversely, if
Rif∗F = 0 for all i > 0, the Leray spectral sequence degenerates. By using the
theorem of Serre again, we can then find n0 ∈ N such that

Hi(X,F ⊗ f∗L⊗n) = Hi(Y, f∗(F)⊗ L⊗n) = 0

for all i > 0 when n > n0.

We also need to consider the local cohomology with respect to the ideal M+ =
(m, T +) ⊂ T . Observe that M+ = M∆T where M is the homogeneous maximal
ideal of T .

2.2. Lemma. Let T be a bigraded ring defined over a ring A. Let A ⊂ T ∆ be a
homogeneous ideal. Let M be a bigraded T -module. We then have for all p, q ∈ Z
and i ≥ 0 that

[Hi
AT (M)]p,q =

{
[Hi

A((M(p− q, 0))∆)]q if p ≥ q,

[Hi
A((M(0, q − p))∆)]p if p < q.
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Proof. Consider T ∆ as a bigraded subring of T concentrated in degrees (p, p)
(p ∈ Z). Then M is a bigraded T ∆-module and Hi

AT (M) = Hi
A(M). Set

Nk = (M(k, 0))∆ (k ∈ Z). We can now write

M =
⊕
k∈Z

⊕
q∈Z

Mq+k,q

 =
⊕
k∈Z

Nk(−k, 0)

where Nk is considered as bigraded T∆-module with [Nk]p,q = 0 if p 6= q. Then

[H i
A(M)]p,q =

⊕
k∈Z

[Hi
A(Nk)]p−k,q = [Hi

A(Np−q)]q.

This implies the claim, because M(k, 0) = M(0− k)(k, k) for all k ∈ Z.

2.3. Lemma. Let R be a graded ring defined over a local ring (A, m). Let M be
the homogeneous maximal ideal of R. Let a ⊂ m be an ideal. Let M be a finitely
generated graded R-module and n0 ∈ Z. Then [Hi

M(M)]n = 0 for all n ≥ n0 and
i ≥ 0 if and only if [H i

(a,R+)(M)]n = 0 for all n ≥ n0 and i ≥ 0.

Proof. Given an ideal b ⊃ a, it is immediately clear from the spectral sequence

Ei,j
2 = Hi

b([Hj
(a,R+)(M)]n) ⇒ [Hi+j

(b,R+)(M)]n

that if [Hi
(a,R+)(M)]n = 0 for all i ≥ 0, also [Hi

(b,R+)(M)]n = 0 for all i ≥ 0. It
is therefore enough to prove that [Hi

M(M)]n = 0 for all n ≥ n0 and i ≥ 0 implies
[Hi

R+(M)]n = 0 for all n ≥ n0 and i ≥ 0.
By moving to the completion R̂ = R ⊗A Â, we can assume that A is complete.

For any p ∈ Spec A, set P = pAp ⊕R+
p . Let us first show that [Hi

P(Mp)]n = 0 for
all p ∈ Spec A, n ≥ n0 and i ≥ 0. Express R as a quotient of some polynomial ring
S defined over a local Gorenstein ring B. According to the graded version of local
duality we have for all i ≥ 0

H i
M(M) = HomS(Extdim S−i

S (M, S(a)), ES(k))

where a ∈ Z and ES(k) is the graded injective envelope of the residue field k of B.
Since ES(k) = HomB(S, EB(k)), this gives

[H i
M(M)]n = HomB([ExtdimS−i

S (M, S(a))]−n, EB(k))

for all n ∈ Z. The assumption thus implies that [Exti
S(M, S(a))]−n = 0 for all

n ≥ n0 and i ≥ 0. Let p ∈ Spec A. Suppose that A = B/I where I ⊂ B is an ideal.
Write p = q/I for some q ∈ Spec B, q ⊂ I. Then

([Exti
S(M, S(a))]−n)q = [ExtiSq

(Mp, Sq(a))]−n.

By using the local duality again, we then get that [Hi
P(Mp)]n = 0 for all n ≥ n0

and i ≥ 0 as desired.
Let us now use induction on dim A to prove the actual claim. If dimA = 0,

Rad(R+) = M and there is nothing to prove. Suppose dim A > 0. If p ∈ Spec A,
p 6= m, we saw above that [Hi

P(Mp)]n = 0 for all n ≥ n0 and i ≥ 0. The induction
hypothesis then gives that

[H i
R+

p
(Mp)]n = ([Hi

R+(M)]n)p = 0.



2222 EERO HYRY

As [Hi
R+(M)]n is a finitely generated A-module, this means that it must have finite

length. But then the spectral sequence

Ei,j
2 = Hi

m([Hj
R+(M)]n) ⇒ [Hi+j

M (M)]n

degenerates to give [Hi
R+(M)]n = [Hi

M(M)]n = 0 for all n ≥ n0 and i ≥ 0.

2.4. Lemma. Let T be a bigraded ring defined over a local ring (A, m). Let M be
the homogeneous maximal ideal of T . Set M+ = (m, T +) ⊂ T . Let M be a finitely
generated bigraded T -module. Then [Hi

M+(M)]p,q = 0 for all p, q ≥ 0 and i ≥ 0 if
and only if [H i

T+(M)]p,q = 0 for all p, q ≥ 0 and i ≥ 0.

Proof. Set Q = T∆, N = M∆ and let Nk = (M(k, 0))∆ (k ∈ Z). According to
Lemma 2.2 we have [H i

M+(M)]p,q = [Hi
M(Np−q)]q. It follows that [Hi

M+(M)]p,q =
0 for p, q ≥ 0 and i ≥ 0 is equivalent to [Hi

N(Nk)]q = 0 for k ∈ Z, q ≥ max(0,−k)
and i ≥ 0. By Lemma 2.3 this is further equivalent to [Hi

Q+(Nk)]q = 0 for k ∈
Z, q ≥ max(0,−k) and i ≥ 0. By using Lemma 2.2 again we see that this is the
same as [Hi

T+(M)]p,q = 0 for p, q ≥ 0 and i ≥ 0.

Let T be an Nr-graded ring defined over a local ring and let M be the homoge-
neous maximal ideal of T . Define for all j = 1, . . . , r the a-invariants

aj(T ) = sup{k ∈ Z|[HdimT
M (T )]n 6= 0 for some n ∈ Zr with nj = k}.

Note that by Lemma 1.1 aj(T ) coincides with the usual a-invariant a(TN) of the
graded ring TN where N is the homogeneous maximal ideal of the ring T

(j)
...,0,....

We are now ready to prove

2.5. Theorem. Let T be a standard bigraded ring of dimension d+2 defined over a
local ring (A, m). Suppose that dim T0,·, dim T·,0 < d + 2 and a1(T ), a2(T ) < 0. Let
M be the homogeneous maximal ideal of T and M+ = (m, T +) ⊂ T . Set Z = ProjT
and E = V+(mT ) ⊂ Z. Then the following conditions are equivalent :

1) T is Cohen-Macaulay;
2) a) [Hi

M+(T )]p,q = 0 if p, q ≥ 0 or p, q < 0 and i < d + 1,
b) [Hd+1

M+
(T )]p,q = 0 if p, q ≥ 0;

3) a) [Hi
M∆((T (p, 0))∆)]q = 0 if p ≥ 0, q /∈ {−p, . . . ,−1} and i < d + 1,

b) [Hi
M∆((T (0, q))∆)]p = 0 if q ≥ 0, p /∈ {−q, . . . ,−1} and i < d + 1,

c) [Hd+1
M∆((T (p, 0))∆)]q = 0, [Hd+1

M∆((T (0, q))∆)]p = 0 if p, q ≥ 0;
4) a) The homomorphism Tp,q → Γ(Z,OZ(p, q)) is an isomorphism for p, q ≥ 0,

b) H i(Z,OZ(p, q)) = 0 if p, q ≥ 0 and i > 0,
c) H i

E(Z,OZ(p, q)) = 0 if p, q < 0 and i < d.
It follows, in particular, that if T is Cohen-Macaulay, then so is T ∆.

Proof.
1) ⇔ 2) Set M+

1 = (m, T+
1 ) and M+

2 = (m, T+
2 ). Then M+

1 + M+
2 = M and

M+
1 ∩M+

2 = M+. Consider the Mayer-Vietoris sequence of local cohomology

· · · → Hi
M(T ) → Hi

M+
1
(T )⊕Hi

M+
2
(T ) → Hi

M+(T ) → Hi+1
M (T ) → · · · .

This implies that H i
M(T ) = 0 for i < d + 2 if and only if the homomorphism

Hi
M+

1
(T )⊕Hi

M+
2
(T ) → Hi

M+(T )(∗)
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is an isomorphism for i < d+1 and injective for i = d+1. We now have M+
1 = M·,0T

and M+
2 = M0,·T . Since T =

⊕
q≥0 T·,q =

⊕
p≥0 Tp,·, it follows that

[Hi
M+

1
(T )]p,q = [Hi

M·,0(T·,q)]p and [Hi
M+

2
(T )]p,q = [Hi

M0,·(Tp,·)]q

for all p, q ∈ Z and i ≥ 0. Therefore we obtain for all i ≥ 0 that

[Hi
M+

1
(T )]p,q = 0 if q < 0 and [Hi

M+
2
(T )]p,q = 0 if p < 0.(†)

Since dim T0,·, dim T·,0 ≤ d + 1, also Hi
M+

1
(T ) = 0 and Hi

M+
2
(T ) = 0 if i > d + 1.

Suppose now that T is Cohen-Macaulay. As we also have a1(T ), a2(T ) < 0, it
follows that [Hi

M(T )]p,q = 0 for all p ≥ 0 or q ≥ 0 and i ≥ 0. By first localizing
at the homogeneous maximal ideals of T0,· and T·,0 respectively, and then using
Lemma 1.1, we may apply Lemma 2.3 to get

[H i
M+

1
(T )]p,q = 0 and [Hi

M+
2
(T )]p,q = 0

for all p, q ≥ 0 and i ≥ 0. The remarks made above then imply that 2) holds.
Suppose then that 2) holds. So [H i

M+(T )]p,q = 0 for all p, q ≥ 0 and i ≥ 0.
We can now use Lemma 2.4 to get [Hi

T+(T )]p,q = 0 for all p, q ≥ 0 and i ≥ 0.
This implies by Corollary 1.5 that the homomorphism Tp,q → Γ(Z,OZ(p, q)) is
an isomorphism and H i(Z,OZ(p, q)) = 0 for all p, q ≥ 0 and i > 0. Set Y =
ProjT·,0, F = V+(mT·,0) ⊂ Y and let g : Z → Y be the canonical projection. If
p ∈ Z and q ≥ 0, we now have

Hi(Z,OZ(p, q)⊗ g∗OY (p′)) = Hi(Z,OZ(p + p′, q)) = 0

for p′ ≥ −p and i > 0. We can then use Lemma 2.1 to obtain Rig∗(OZ(p, q)) = 0
for i > 0. This implies that the Leray spectral sequence

Ei,j
2 = Hi

F (Y, Rjg∗(OZ(p, q))) ⇒ H i+j
E (Z,OZ(p, q))

degenerates. The edge homomorphisms H i
F (Y, g∗(OZ(p, q))) → H i

E(Z,OZ(p, q))
are thus isomorphisms for all p ∈ Z, q ≥ 0 and i ≥ 0. Let Tq denote the quasi-
coherent OY -module corresponding to T·,q (q ≥ 0). Also the canonical homo-
morphism Tq(p) → g∗(OZ(p, q)) is now an isomorphism for p ∈ Z and q ≥ 0.
As g∗(OZ(p, q)) ⊗ OY (p′) = g∗(OZ(p + p′, q)), we can see this by showing that
Γ(Y, Tq(p)) → Γ(Z,OZ(p, q)) is an isomorphism for p � 0. But for p � 0,
Γ(Y, Tq(p)) = Tp,q = Γ(Z,OZ(p, q)). It follows that the homomorphisms

H i
F (Y, Tq(p)) → Hi

F (Y, g∗(OZ(p, q))) → H i
E(Z,OZ(p, q))

mentioned in Theorem 1.4 are isomorphisms for all p ∈ Z, q ≥ 0 and i ≥ 0. Com-
bined with the five lemma Theorem 1.4 then implies that the homomorphism

[H i
M+

1
(T )]p,q → [Hi

M+(T )]p,q

is an isomorphism for all p ∈ Z, q ≥ 0 and i ≥ 0. Similarly, the homomorphism

[Hi
M+

2
(T )]p,q → [Hi

M+(T )]p,q

is an isomorphism for all p ≥ 0, q ∈ Z and i ≥ 0. For p, q ≥ 0, this means that

[Hi
M+

1
(T )]p,q = 0 and [Hi

M+
2
(T )]p,q = 0.

By taking into account the formulas (†), it now follows that if p ≥ 0 or q ≥ 0, the
homomorphism (∗) is an isomorphism in degree (p, q) for all i ≥ 0. By assumption
[Hi

M+(T )]p,q = 0 for p, q < 0 and i < d + 1. We then see that in degrees (p, q) with
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p, q < 0 (∗) is an isomorphism for i < d + 1 and injective for i = d + 1. This means
that T is Cohen-Macaulay as wanted.

2) ⇔ 3) This is an immediate consequence of Lemma 2.2.
2) ⇔ 4) Corollary 1.5 implies that 4) a) and b) are equivalent to [Hi

T+(T )]p,q = 0
for all p, q ≥ 0 and i ≥ 0. By Lemma 2.4 this is in turn equivalent to [H i

M+(T )]p,q =
0 for all p, q ≥ 0 and i ≥ 0. By using Theorem 1.4 we get that H i

E(Z,OZ(p, q)) =
[Hi+1

M+(T )]p,q for all p, q < 0 and i ≥ 0. Therefore [H i
M+(T )]p,q = 0 for p, q < 0 and

i < d + 1 is equivalent to Hi
E(Z,OZ(p, q)) = 0 for p, q < 0 and i < d. So 2) and 4)

are equivalent.

This last remark follows from 3). Note that by the Mayer-Vietoris sequence we
have H i

M∆(T ∆) = (Hi
M+(T ))∆ = 0 for i > d + 1, since dim T0,·, dim T·,0 < d + 2.

2.6. Remark. Note the general fact that

inf{i|Hi
M+(T ) 6= 0} ≤ htM+ ≤ d + 2−max(dim T·,0/mT·,0, dim T0,·/mT0,·).

If T is Cohen-Macaulay, it comes out from the proof of Theorem 2.5 that

[H i
M+(T )]p,q =

{
[Hi

M0,·(Tp,·)]q if p ≥ 0 and q < 0,

[Hi
M·,0(T·,q)]p if p < 0 and q ≥ 0

for i < d + 1. Also recall that we then necessarily have [Hi
M·,0(T·,q)]p = 0 and

[Hi
M·,0(Tp,·)]q = 0 for all p, q ≥ 0 and i ≥ 0.

We now want to apply Theorem 2.5 to the case of multi-Rees algebras. Recall
first the following fact ([6, Lemma 2.1]):

2.7. Lemma. Let A be a local ring and let I1, . . . , Ir ⊂ A be ideals of positive
height. Then aj(RA(I1, . . . , Ir)) = −1 for all j = 1, . . . , r.

2.8. Corollary. Let A be a local ring of dimension d and let I, J ⊂ A be ideals of
positive height. Let N be the homogeneous maximal ideal of RA(IJ). Then RA(I, J)
is Cohen-Macaulay if and only if the following conditions hold :

a) [H i
N(IpRA(IJ))]q = 0 if p ≥ 0, q /∈ {−p, . . . ,−1} and i < d + 1;

b) [H i
N(JqRA(IJ))]p = 0 if q ≥ 0, p /∈ {−q, . . . ,−1} and i < d + 1.

Proof. The claim will follow from Theorem 2.5 3) if we can show that condition 3)
c) holds in this case. Set Q = RA(IJ). Let p ≥ 0. There is an exact sequence

0 → K → QN → IpQ → 0

of graded Q-modules. The corresponding long exact sequence of cohomology gives
us an epimorphism

(Hd+1
N (Q))N → Hd+1

N (IpQ) → 0.

By Lemma 2.7 this implies [Hd+1
N (IpQ)]q = 0 for q ≥ 0. Similarly, we also have

[Hd+1
N (IqQ)]p = 0 for p, q ≥ 0.

2.9. Example. Let A be a local ring of dimension d and let I ⊂ A be an ideal of
positive height. Put T = RA(I, I), R = RA(I) and Q = RA(I2). Let M and N be
the homogeneous maximal ideals of R and Q respectively. Let p ≥ 0. Noting that
IpQ equals to the Veronesian (IpR)(2) we get (cf. [9, Proposition (47.5)]) for all
i < d + 1 and q /∈ {−p, . . . ,−1} that [H i

N(IpQ)]q = [Hi
M(IpR)]2q = [Hi

M(R)]2q+p



THE DIAGONAL SUBRING 2225

where the last step comes from the cohomology sequence corresponding to the exact
sequence

0 → IpR → R(p) →
−1⊕

k=−p

Ik+ptk → 0.

Similarly, [Hi
N(JqQ)]p = [Hi

M(R)]2p+q for p /∈ {−q, . . . ,−1}. By Corollary 2.8 we
thus see that T is Cohen-Macaulay if and only if [Hi

M(R)]p = 0 for p 6= −1 and
i < d + 1. This can also be seen directly (cf. [6, Theorem 2.2]).

2.10. Corollary. Let A be a local ring and let I1, . . . , Ir ⊂ A be ideals of positive
height. If RA(I1, . . . , Ir) is Cohen-Macaulay, also RA(I1 · · · Ir) is Cohen-Macaulay.

Proof. Use induction on r. Put B = RA(I1, . . . , Ir−2)N where N is the homogeneous
maximal ideal of RA(I1, . . . , Ir−2). We then have

RA(I1, . . . , Ir)N = RB(Ir−1B, IrB).

We now obtain from Lemma 2.7 and Theorem 2.5 that

RB((Ir−1B)(IrB)) = RA(I1, . . . , Ir−2, Ir−1Ir)N

is Cohen-Macaulay. Hence also RA(I1, . . . , Ir−2, Ir−1Ir) is Cohen-Macaulay. The
induction hypothesis then implies that RA(I1 · · · Ir) is Cohen-Macaulay.

The following example shows that the converse of Corollary 2.10 does not hold.

2.11. Example. The Cohen-Macaulayness of RA(IJ) does not imply the Cohen-
Macaulayness of RA(I, J) even if RA(I) and RA(J) are assumed to be Cohen-
Macaulay. Let (A, m) be a local Cohen-Macaulay ring of positive dimension and
let I ⊂ A be an m-primary ideal with reduction number one. If J ⊂ I is a minimal
reduction, we thus have I2 = IJ . Then RA(I), RA(J) and RA(IJ) = RA(I2) =
(RA(I))(2) are Cohen-Macaulay (cf. [22, Proposition 3.1] and [21, Theorem 1.1]).
Since also grA(I) is Cohen-Macaulay, the cohomology sequence corresponding to
the exact sequence

0 → IRA(I) → RA(I) → grA(I) → 0

implies that IRA(I) and so also IRA(I2) = (IRA(I))2 are Cohen-Macaulay mod-
ules. As JRA(IJ) = J ⊕ I3 ⊕ I5 ⊕ · · · , there is an exact sequence

0 → JRA(IJ) → IRA(I2) → I/J → 0.

If N denotes the homogeneous maximal ideal of RA(IJ), the corresponding coho-
mology sequence then gives that

[H1
N(JRA(IJ))]0 = H0

m(I/J) = I/J 6= 0.

According to Corollary 2.8 this means that RA(I, J) cannot be Cohen-Macaulay.

Although the converse of Corollary 2.10 does not hold, we will show in Theorem
2.13 that under certain assumptions the Cohen-Macaulayness of RA(IJ) implies
that of RA(Ik, J l) for k, l � 0. First we need the following lemma:

2.12. Lemma. Let T be a standard r-graded ring defined over local ring (A, m)
which is a homomorphic image of a local Gorenstein ring B. Set Z = ProjT and
E = V+(mT ) ⊂ Z. Then the following conditions are equivalent :

1) Z is Cohen-Macaulay and equidimensional ;
2) H i

E(Z,OZ(n)) = 0 for i < dim Z when n1, . . . , nr � 0.
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Proof. Consider Z as a closed subscheme of some multiprojective space P = PN1
B ×B

· · · ×B PNr

B . Let I be the ideal sheaf of Z in P . According to the “local-global
duality” of Lipman [13, Theorem p. 188]

Hi
E(Z,OZ(n)) = HomB(Extdim P−i

OP
(OP /I, ωP (−n)), EB(k))

where ωP is the dualizing sheaf of P . By using Theorem 1.6 we obtain from the
spectral sequence of local to global Ext that if n1, . . . , nr � 0, then

ExtiOP
(OP /I, ωP (n)) = Γ(P, ExtiOP

(OP /I, ωP (n)))

for all i ≥ 0. It follows that 2) is equivalent to having

Γ(P, ExtiOP
(OP /I, ωP ))(n) = 0

for i > dim P − dim Z when n1, . . . , nr � 0. This being in turn equivalent to

ExtiOP
(OP /I, ωP ) = 0

for i > dim P − dim Z, we see that 2) is equivalent to Exti
OP,z

(OZ,z ,OP,z) = 0 for
every closed point z ∈ Z and i > dimOP,z − dim Z. By local duality this is the
same as OZ,z is Cohen-Macaulay and dimOZ,z = dim Z. If Z ′ is an irreducible
component of Z containing z, then also dimOZ′,z = dim Z. Taking into account
Lemma 1.2 we see that 1) and 2) are equivalent.

2.13. Theorem. Let (A, m) be a local ring and let I, J ⊂ A be ideals of positive
height. Set X = ProjRA(I), Y = ProjRA(J) and Z = ProjRA(IJ). Let f :
Z → X and g : Z → Y be the canonical projections. Suppose that RA(IJ) is
Cohen-Macaulay. Then RA(Ik, J l) is Cohen-Macaulay for all k, l � 0 if and only
if the homomorphisms OX → f∗OZ ,OY → g∗OZ are isomorphisms and we have
Rif∗OZ = 0, Rig∗OZ = 0 for all i > 0.

Proof. We may assume that A is complete. Set T = RA(I, J), Z = ProjT and E =
V+(mT ) ⊂ Z. Let d = dim A. As T∆ = RA(IJ) is equidimensional of dimension
d + 1, we know by Lemma 1.2 that Z ∼= Z∆ = ProjRA(IJ) is equidimensional of
dimension d. Since T ∆ is Cohen-Macaulay, we also see that Z is Cohen-Macaulay.
Lemma 2.12 therefore implies that H i

E(Z,OZ(p, q)) = 0 for p, q � 0 and i < d. By
Theorem 1.6 H i(Z,OZ(p, q)) = 0 for all i > 0 when p, q � 0. As T ∆ is Cohen-
Macaulay and a(T ∆) < 0, we obtain from Lemma 2.3 that [Hi

(T∆)+(T ∆)]n = 0 for
all n ≥ 0 and i ≥ 0. This means, in particular, that H i(Z,OZ) = Hi(Z∆,OZ∆) =
[Hi+1

(T∆)+(T ∆)]0 = 0 for all i > 0. By the exact sequence

0 → [H0
(T∆)+(T ∆)]0 → A → Γ(Z∆,OZ∆) → [H1

(T∆)+(T ∆)]0 → 0

we also see that the homomorphism A → Γ(Z,OZ) is an isomorphism. By The-
orem 1.6 we know that the homomorphism Tp,q → Γ(Z,OZ(p, q)) is an isomor-
phism for p, q � 0. Let k, l > 0. Set Z(k,l) = ProjT (k,l) where T (k,l) denotes
the bi-Veronesian

⊕
p,q≥0 Tpk,ql. There is an isomorphism ϕk,l : Z → Z(k,l)

such that ϕ∗k,l(OZ(k,l)(p, q)) = OZ(pk, ql). It now follows from Theorem 2.5 4)
that RA(Ik, J l) = T (k,l) is Cohen-Macaulay for k, l � 0 if and only if the ho-
momorphisms Tp,0 → Γ(Z,OZ(p, 0)), T0,q → Γ(Z,OZ(0, q)) are isomorphisms
for p, q � 0 and H i(Z,OZ(p, 0)) = 0, Hi(Z,OZ(0, q)) = 0 for p, q � 0 and
i > 0. For p � 0, we know that the homomorphism Tp,0 → Γ(X,OX(p)) is
an isomorphism. As f∗(OZ(p, 0)) = f∗OZ ⊗ OX(p), we see that the homomor-
phism Tp,0 → Γ(Z,OZ(p, 0)) is an isomorphism for p � 0 if and only if the
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homomorphism OX → f∗OZ is an isomorphism. Similarly, the homomorphism
T0,q → Γ(Z,OZ(0, q)) is an isomorphism for q � 0 if and only if the homomorphism
OX → g∗OZ is an isomorphism. By Lemma 2.1 the conditions Hi(Z,OZ(p, 0)) =
0, H i(Z,OZ(0, q)) = 0 for p, q � 0 and i > 0 are equivalent to the conditions
Rif∗OZ = 0, Rig∗OZ = 0 for i > 0. This means that the claim has been proven.

Finally, we also want to mention the following application of Theorem 2.5.

2.14. Theorem. Let S = A[X1, . . . , Xr, Y1, . . . , Ys] be a polynomial ring over a
local Cohen-Macaulay ring A. Let I ⊂ S be a bihomogeneous ideal generated by
forms of bidegree (d, e) where d, e > 0. Suppose that ht i < min(r/d, s/e). If the ring
S/I is Cohen-Macaulay, then also the diagonal subring (S/I)∆ is Cohen-Macaulay.

Proof. Set T = S/I. We want to apply Theorem 2.5. As ht I < min(r, s), we
have dim T ≥ 2 and dim T0,·, dim T·,0 < dim T . Therefore we need to show that
a1(T ) < 0 and a2(T ) < 0. Consider, for example, the latter inequality. Let M be
the homogeneous maximal ideal of S. The a-invariant a2(T ) does not change if we
localize at the homogeneous maximal ideal M·,0 of S·,0 (cf. Lemma 1.1). We may
therefore replace S by the graded ring B[Y1, . . . , Ys] where B is the localization
of S·,0, and assume that I ⊂ S is a homogeneous ideal generated by forms of
degree e. Let n be the maximal ideal of the local ring B. By moving to the
faithfully flat extension B[t]nB[t] where t is an indeterminate, we can assume that
the residue field of B is infinite. Put h = ht I. Since h = grade I, we can find forms
F1, . . . , Fh ∈ Ie such that (F1, . . . , Fh) is a regular sequence (cf. [1, Proposition
1.5.12]). If T ′ = S/(F1, . . . , Fh), we have dim T ′ = dim T and there is an exact
sequence 0 → J → T ′ → T → 0 of graded S-modules. The corresponding long
exact sequence of cohomology then gives an epimorphism

Hdim T
M (T ′) → HdimT

M (T ) → 0

which implies that a(T ) ≤ a(T ′). Since T is Cohen-Macaulay and (F1, . . . , Fh)
is a regular sequence consisting of forms of degree e, we have a(T ′) = a(S) + eh
(cf. [23, Remark 5.1.21]). It is also well-known that a(S) = −s. Since eh < s by
assumption, we obtain a(T ) ≤ a(T ′) < 0.

2.15. Example. Let A be a local Cohen-Macaulay ring. Suppose that F1, . . . , Fs

are forms of degree d in the polynomial ring R = A[X1, . . . ,Xr] such that (F1, . . . ,Fs)
is a regular sequence. If A denotes the ideal (F1, . . . , Fs), it is then well-known that
the Rees algebra RR(A) is isomorphic to the quotient S/I where S is the polynomial
ring A[X1, . . . , Xr, Y1, . . . , Ys] and I is the ideal generated by the forms FiYj−FjYi

(i, j = 1, . . . , s). Moreover, we know that RR(A) is Cohen-Macaulay. Theorem 2.14
now says that if (s − 1)d < r, then the diagonal subring (S/I)∆ is also Cohen-
Macaulay. In the case A is a field we recover here a result of Simis, Trung and
Valla (cf. [19]).

If (s−1)d ≥ r, it may happen that (S/I)∆ is not Cohen-Macaulay. Suppose, for
example, that A = k is a field, r = 2 and F1 = X3

1 , F2 = X3
2 . Then

S∆ = k[X1Y1, X1Y2, X2Y1, X2Y2]
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and

I∆ =(X1Y1)2(X1Y2)− (X2Y1)3,

(X2Y1)(X2Y2)2 − (X1Y2)3,

(X1Y1)(X1Y2)2 − (X2Y1)2(X2Y2)).

Using the isomorphism k[Z0, Z1, Z2, Z3]/(Z1Z2 − Z0Z3) → S∆ where

Z0 7→ X1Y1, Z1 7→ X1Y2, Z2 7→ X2Y1, Z3 7→ X2Y2,

we see that

(S/I)∆ = k[Z0, Z1, Z2, Z3]/(Z3
1 − Z2Z

2
3 , Z3

2 − Z2
0Z1, Z0Z

2
1 − Z2

2Z3, Z0Z3 − Z1Z2).

This is the homogeneous coordinate ring of the twisted quartic curve in P3, which
is well-known to be a non-Cohen-Macaulay ring.

3. An application to the joint reduction numbers

Let T be a standard bigraded ring defined over a local ring. Let z1, . . . , zλ ∈ T
be homogeneous elements. In analogy with the usual graded case (cf. [20]) we say
that the sequence (z1, . . . , zλ) is filter-regular if

[(z1, . . . , zi−1) : zi]p,q = [(z1, . . . , zi−1)]p,q

for p, q � 0 (i = 1, . . . , λ). This is clearly equivalent to

(z1, . . . , zi−1) : zi ⊂
∞⋃

n=0

(z1, . . . , zi−1) : (T +)n (i = 1, . . . , λ).

Recall that a graded ring defined over a local ring is said to be generalized Cohen-
Macaulay if its localization at the homogeneous maximal ideal is a generalized
Cohen-Macaulay ring. For information about generalized Cohen-Macaulay rings
we refer to [18] and [9].

3.1. Lemma. Let T be a standard bigraded ring defined over an Artinian local
ring. Suppose that T ∆ is a generalized Cohen-Macaulay ring. Let (z1, . . . , zλ) be
a system of parameters of T ∆ consisting of homogeneous elements of degree one.
Then (z1, . . . , zλ) is a filter-regular sequence on T . Suppose, moreover, that we have
zi = xiyi (i = 1, . . . , λ) for some homogeneous elements x1, . . . , xλ, y1, . . . , yλ ∈ T .
Then also (x1, . . . , xλ) and (y1, . . . , yλ) are filter-regular sequences on T .

Proof. Let i ∈ {1, . . . , λ}. It is enough to show that

((z1, . . . , zi−1) : zi)P = (z1, . . . , zi−1)P

for P ∈ ProjT . If (z1, . . . , zi)P = (1), we are done. Assume thus (z1, . . . , zi)P 6= (1).
The localization (T ∆)P∆ is now Cohen-Macaulay. Since T ∆ is equidimensional and
catenary, (z1/1, . . . , zi/1) must be a part of a system of parameters of (T∆)P∆ .
Therefore it is also a regular sequence. Recall that for any standard r-graded ring
T and a homogeneous prime ideal P ⊂ T, TP

∼= (T(P )[t1, . . . , tr])P, where t1, . . . , tr
are indeterminates and P = P(P )T(P )[t1, . . . , tr] (cf. [9, Corollary (12.18)] for the
case r = 1). Choose s ∈ T1,1, s /∈ P . Then also (z1/s, . . . , zi/s) is a regular sequence
in (T ∆)P∆ . Since (T ∆)(P∆) → (T ∆)P∆ is a faithfully flat extension, it is a regular
sequence also in (T ∆)(P∆) = T(P ). Because T(P ) → TP is a faithfully flat extension,
it follows that (z1/s, . . . , zi/s) and so also (z1/1, . . . , zi/1) are regular sequences
in TP . This proves the first assertion. The second one follows from the fact that
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if (x1y1/1, . . . , xiyi/1) is a regular sequence in TP , then so are (x1/1, . . . , xi/1)
and (y1/1, . . . , yi/1) (unless (x1/1, . . . , xi/1) = (1) or (y1/1, . . . , yi/1) = (1)) ([10,
Exercise 12, p. 102]).

We next recall certain definitions from [11]. Let us say that an ideal A ⊂ T is
irrelevant if Ap,q = Tp,q for p, q � 0. Suppose x1, . . . , xλ ∈ T1,0 and y1, . . . , yλ ∈
T0,1. The set {x1, . . . , xλ, y1, . . . , yλ} is called a complete reduction of T if the
ideal (x1y1, . . . , yλyλ) ⊂ T is irrelevant. A joint reduction of type (µ, ν) (µ + ν =
λ) is a set {u1, . . . , uµ, v1, . . . , vν} with u1, . . . , uµ ∈ T1,0 and v1, . . . , vν ∈ T0,1

such that the ideal (u1, . . . , uµ, v1, . . . , vν) ⊂ T is irrelevant. From a complete
reduction {x1, . . . , xλ, y1, . . . , yλ} we can always form joint reductions of any type:
if {i1, . . . , iµ} ∪ {j1, . . . , jν} is a partition of the set {1, . . . , λ} into two disjoint
subsets, then {xi1 , . . . , xiµ , yj1 , . . . , yjν} is a joint reduction of T of type (µ, ν). By
definition the analytic spread of T ∆ is l(T ∆) = dim T∆/nT ∆ where n denotes the
maximal ideal of B = T0. According to [11, Theorem 1.6, Lemma 1.7] there always
exists complete reductions of T with λ ≥ l(T∆) if the residue field of B is infinite.
It is well-known that this can be achieved by moving to the faithfully flat extension
B[t]nB[t] where t is an indeterminate.

3.2. Definition. Let T be a standard bigraded ring defined over a local ring.
Let K = {x1, . . . , xλ, y1, . . . , yλ} be a complete reduction of T . Suppose µ, ν ∈
{1, . . . , λ} with λ + ν = λ. Let n be the smallest integer such that

[(xi1 , . . . , xiµ , yj1 , . . . , yjν )]p,q = Tp,q

for p, q > n and all partitions {i1, . . . , iµ}∪{j1, . . . , jν} of {1, . . . , λ}. We call n the
joint reduction number of type (µ, ν) with respect to K and denote it by rµ,ν

K (T ).
Let A be a local ring and let I, J ⊂ A be ideals. Let G be the bi-form

ring grA(I, J) = RA(I, J)/(IJ)RA(I, J). If a1, . . . , aλ ∈ I, b1, . . . , bλ ∈ J , let
a∗1, . . . , a∗λ ∈ G1,0, b

∗
1, . . . , b

∗
λ ∈ G0,1 denote the corresponding initial forms. We

then say that K = {a1, . . . , aλ, b1, . . . , bλ} is a complete reduction of I and J if
K∗ = {a∗1, . . . , a∗λ, b∗1, . . . , b

∗
λ} is a complete reduction of G. In a similar way we

speak about joint reductions of I and J . By definition the joint reduction number
rµ,ν
K (I, J) = rµ,ν

K∗ (G) is now the smallest integer n satisfying

In+1Jn+1 = (ai1 , . . . , aiµ)InJn+1 + (bj1 , . . . , bjν )In+1Jn

for all partitions {i1, . . . , iµ} ∪ {j1, . . . , jν} of {1, . . . , λ}.

3.3. Theorem. Let T be a standard bigraded ring defined over an Artinian local
ring. Suppose that T ∆ is a generalized Cohen-Macaulay ring of dimension d and
that [H i

T+(T )]p,q ≥ 0 for all p, q ≥ 0 and i ≥ 0. Let K = {x1, . . . , xd, y1, . . . , yd}
be a complete reduction of T . We then have rµ,ν

K (T ) ≤ max(µ, ν)− 1 for all µ, ν ∈
{1, . . . , d} with µ + ν = d.

Proof. Consider first any filter-regular sequence (z1, . . . , zλ) on T consisting of ho-
mogeneous elements. Suppose that zj is of degree (pj , qj). Set T j = T/(z1, . . . , zj−1)
(j = 1, . . . , λ + 1). We have for j = 1, . . . , λ the exact sequences

0 → Kj → T j → T j/Kj → 0

and

0 → T j/Kj(−pj ,−qj)
·zj−−→ T j → T j+1 → 0



2230 EERO HYRY

where Kj = (z1, . . . , zj−1) : zj/(z1, . . . , zj−1). Because

Kj ⊂ (z1, . . . , zj−1) : (T +)n/(z1, . . . , zj−1)

for n � 0, the long exact sequence of cohomology corresponding to the first se-
quence implies that H i

T+(T j/Kj) = Hi
T+(T j) for i > 0. The long exact sequence

of cohomology corresponding to the second sequence gives for all i ≥ 0 the exact
sequence

[Hi
T+(T j)]p,q → [Hi

T+(T j+1)]p,q → [Hi+1
T+ (T j)]p−pj ,q−qj .

By assumption [H i
T+(T )]p,q = 0 for p, q ≥ 0. It follows by induction on j that

[Hi
T+(T j)]p,q = 0 for p ≥ p1 + · · ·+ pj−1 and q ≥ q1 + · · ·+ qj−1. In particular, we

obtain [H0
T+(T λ+1)]p,q = 0 for p ≥ p1 + · · ·+ pλ and q ≥ q1 + · · ·+ qλ.

Let µ, ν ∈ {1, . . . , d} with µ + ν = d and let {i1, . . . , iµ} ∪ {j1, . . . , jν} be a
partition of {1, . . . , d}. As x1y1, . . . , xdyd is a system of parameters of T∆, we obtain
from Lemma 3.1 that (xi1 , . . . , xiµ , yj1 , . . . , yjν ) is a filter-regular sequence on T .
We now apply the result proved above to this sequence. So [H0

T+(T d+1)]p,q = 0 for
p ≥ µ and q ≥ ν. On the other hand, if r = rµ,ν

K (T ), we must have [H0
T+(T d+1)]r,r =

T d+1
r,r 6= 0. Thus r < µ or r < ν.

3.4. Corollary. Let (A, m) be a local ring of dimension d and let I, J ⊂ A be
m-primary ideals. Let K = {a1, . . . , ad, b1, . . . , bd} be a complete reduction of I
and J . If RA(I, J) is Cohen-Macaulay, then rµ,ν

K (I, J) ≤ max(µ, ν) − 1 for all
µ, ν ∈ {1, . . . , d} with µ + ν = d.

Proof. Set T = RA(I, J) and G = grA(I, J) = T/(IJ)T . By Corollary 2.10 RA(IJ)
is Cohen-Macaulay. Therefore G∆ = grA(IJ) is generalized Cohen-Macaulay (cf.
[21, Proposition 3.3]). Let us show that [Hi

G+(G)]p,q = 0 for all p, q ≥ 0 and i ≥ 0.
Consider the exact sequences

0 → T + → T → T/T+ → 0

and

0 → T +(1, 1) = (IJ)T → T → G → 0.

As H0
T+(T/T +) = T/T + and Hi

T+(T/T +) = 0 for i > 0, the cohomology sequence
corresponding to the first sequence gives [Hi

T+(T +)]p,q = [Hi
T+(T )]p,q for all i ≥ 0

if p 6= 0 and q 6= 0. We then obtain from the cohomology sequence of the second
sequence for all p, q ≥ 0 and i ≥ 0 the exact sequence

[H i
T+(T )]p,q → [Hi

G+(G)]p,q → [Hi+1
T+ (T )]p+1,q+1.

Since by Lemma 2.4 and Theorem 2.5 2) [Hi
T+(T )]p,q = 0 for all p, q ≥ 0 and i ≥ 0,

we get that also [H i
G+(G)]p,q = 0 for all p, q ≥ 0 and i ≥ 0. We can now apply

Theorem 3.3 to get the claim.

Let (A, m) be a two-dimensional local Cohen-Macaulay ring and let I, J ⊂ A

be m-primary ideals. Verma proved in [24, Theorem 3.2] that r1,1
K (I, J) = 0 for

all complete reductions K = {a1, a2, b1, b2} of I and J if and only if the formula
e1(I, J) = l(A/IJ)− l(A/I)− l(A/J) holds for the mixed multiplicity e1(I, J) of I
and J . In this case [8, Theorem 3.4] says that the Cohen-Macaulayness of RA(I, J)
is equivalent to that of RA(I) and RA(J). Combining these results with Corollary
3.4 gives us
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3.5. Corollary. Let (A, m) be a local Cohen-Macaulay ring of dimension two and
let I, J ⊂ A be m-primary ideals. Then RA(I, J) is Cohen-Macaulay if and only if
RA(I), RA(J) are Cohen-Macaulay and we have that e1(I, J) = l(A/IJ)− l(A/I)−
l(A/J).
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