Thermal capacity estimates on

the Allen-Cahn equation

Authors:
Richard B. Sowers and Jang-Mei Wu

Journal:
Trans. Amer. Math. Soc. **351** (1999), 2553-2567

MSC (1991):
Primary 31B35, 35K57, 60J45

Published electronically:
February 9, 1999

MathSciNet review:
1624210

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the Allen-Cahn equation in a well-known scaling regime which gives motion by mean curvature. A well-known transformation of this PDE, using its standing wave, yields a PDE the solution of which is approximately the distance function to an interface moving by mean curvature. We give bounds on this last fact in terms of thermal capacity. Our techniques hinge upon the analysis of a certain semimartingale associated with a certain PDE (the PDE for the approximate distance function) and an analogue of some results by Bañuelos and Øksendal relating lifetimes of diffusions to exterior capacities.

**[BanOks]**R. Bañuelos and B. Øksendal,*Exit times for elliptic diffusions and BMO*, Proc. Edinburgh Math. Soc. (2)**30**(1987), no. 2, 273–287. MR**892696**, 10.1017/S0013091500028339**[BSS]**G. Barles, H. M. Soner, and P. E. Souganidis,*Front propagation and phase field theory*, SIAM J. Control Optim.**31**(1993), no. 2, 439–469. MR**1205984**, 10.1137/0331021**[CGG]**Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto,*Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations*, Proc. Japan Acad. Ser. A Math. Sci.**65**(1989), no. 7, 207–210. MR**1030181****[Chung]**Kai Lai Chung,*Lectures from Markov processes to Brownian motion*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 249, Springer-Verlag, New York-Berlin, 1982. MR**648601****[ESI]**L. C. Evans and J. Spruck,*Motion of level sets by mean curvature. I*, J. Differential Geom.**33**(1991), no. 3, 635–681. MR**1100206****[ESII]**L. C. Evans and J. Spruck,*Motion of level sets by mean curvature. II*, Trans. Amer. Math. Soc.**330**(1992), no. 1, 321–332. MR**1068927**, 10.1090/S0002-9947-1992-1068927-8**[ESIII]**L. C. Evans and J. Spruck,*Motion of level sets by mean curvature. III*, J. Geom. Anal.**2**(1992), no. 2, 121–150. MR**1151756**, 10.1007/BF02921385**[ESIV]**Lawrence C. Evans and Joel Spruck,*Motion of level sets by mean curvature. IV*, J. Geom. Anal.**5**(1995), no. 1, 77–114. MR**1315658**, 10.1007/BF02926443**[ESS]**L. C. Evans, H. M. Soner, and P. E. Souganidis,*Phase transitions and generalized motion by mean curvature*, Comm. Pure Appl. Math.**45**(1992), no. 9, 1097–1123. MR**1177477**, 10.1002/cpa.3160450903**[HayPomm]**W. K. Hayman and Ch. Pommerenke,*On analytic functions of bounded mean oscillation*, Bull. London Math. Soc.**10**(1978), no. 2, 219–224. MR**500932**, 10.1112/blms/10.2.219**[Hunt]**G. A. Hunt,*Markoff processes and potentials. III*, Illinois J. Math.**2**(1958), 151–213. MR**0107097****[Illmanen]**Tom Ilmanen,*Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature*, J. Differential Geom.**38**(1993), no. 2, 417–461. MR**1237490****[KS]**Ioannis Karatzas and Steven E. Shreve,*Brownian motion and stochastic calculus*, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR**1121940****[Mueller]**Carl Mueller,*A characterization of BMO and BMOᵨ*, Studia Math.**72**(1982), no. 1, 47–57. MR**665891****[RY]**Daniel Revuz and Marc Yor,*Continuous martingales and Brownian motion*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1991. MR**1083357****[Sonera]**H. M. Soner,*Ginzburg-Landau equation and motion by mean curvature, I: convergence*, (to appear), Journal of Geometric Analysis.**[Sonerb]**H. M. Soner,*Ginzburg-Landau equation and motion by mean curvature, II: development of the interface*, (to appear), Journal of Geometric Analysis.**[Stegenga]**David A. Stegenga,*A geometric condition which implies BMOA*, Michigan Math. J.**27**(1980), no. 2, 247–252. MR**568645****[Stroock]**Daniel W. Stroock,*Probability theory, an analytic view*, Cambridge University Press, Cambridge, 1993. MR**1267569****[Watson]**N. A. Watson,*Thermal capacity*, Proc. London Math. Soc. (3)**37**(1978), no. 2, 342–362. MR**507610**, 10.1112/plms/s3-37.2.342

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
31B35,
35K57,
60J45

Retrieve articles in all journals with MSC (1991): 31B35, 35K57, 60J45

Additional Information

**Richard B. Sowers**

Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2917

Email:
r-sowers@math.uiuc.edu

**Jang-Mei Wu**

Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2917

Email:
wu@math.uiuc.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02399-5

Keywords:
Allen-Cahn equation,
mean curvature,
thermal capacity

Received by editor(s):
October 20, 1997

Received by editor(s) in revised form:
April 28, 1998

Published electronically:
February 9, 1999

Additional Notes:
The work of R. S. was supported by NSF Grants DMS 96-26398 and DMS 96-15877 and the Research Board of the University of Illinois at Urbana-Champaign.

The work of J.-M. W. was supported by NSF Grant DMS 97-05227.

Article copyright:
© Copyright 1999
American Mathematical Society