Multivariate matrix refinable functions

with arbitrary matrix dilation

Author:
Qingtang Jiang

Journal:
Trans. Amer. Math. Soc. **351** (1999), 2407-2438

MSC (1991):
Primary 39B62, 42B05, 41A15; Secondary 42C15

Published electronically:
February 15, 1999

MathSciNet review:
1650101

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Characterizations of the stability and orthonormality of a multivariate matrix refinable function with arbitrary matrix dilation are provided in terms of the eigenvalue and -eigenvector properties of the restricted transition operator. Under mild conditions, it is shown that the approximation order of is equivalent to the order of the vanishing moment conditions of the matrix refinement mask . The restricted transition operator associated with the matrix refinement mask is represented by a finite matrix , with and being the Kronecker product of matrices and . The spectral properties of the transition operator are studied. The Sobolev regularity estimate of a matrix refinable function is given in terms of the spectral radius of the restricted transition operator to an invariant subspace. This estimate is analyzed in an example.

**1.**C. Cabrelli, C. Heil and U. Molter,*Accuracy of lattice translates of several multidimensional refinable functions*, J. Approx. Theory**95**(1998), 5-52. CMP**99:01****2.**Charles K. Chui and Jian-ao Lian,*A study of orthonormal multi-wavelets*, Appl. Numer. Math.**20**(1996), no. 3, 273–298. Selected keynote papers presented at 14th IMACS World Congress (Atlanta, GA, 1994). MR**1402703**, 10.1016/0168-9274(95)00111-5**3.**Albert Cohen, Ingrid Daubechies, and Gerlind Plonka,*Regularity of refinable function vectors*, J. Fourier Anal. Appl.**3**(1997), no. 3, 295–324. MR**1448340**, 10.1007/BF02649113**4.**M. J. Collins,*Representations and characters of finite groups*, Cambridge Studies in Advanced Mathematics, vol. 22, Cambridge University Press, Cambridge, 1990. MR**1050762****5.**Ingrid Daubechies,*Ten lectures on wavelets*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR**1162107****6.**Carl de Boor, Ronald A. DeVore, and Amos Ron,*The structure of finitely generated shift-invariant spaces in 𝐿₂(𝑅^{𝑑})*, J. Funct. Anal.**119**(1994), no. 1, 37–78. MR**1255273**, 10.1006/jfan.1994.1003**7.**C. de Boor, R. DeVore and A. Ron,*Approximation orders of FSI spaces in*, I, II, Constr. Approx.**14**(1998), 411-427, 631-652. CMP**98:14**; CMP**99:01****8.**Jeffrey S. Geronimo, Douglas P. Hardin, and Peter R. Massopust,*Fractal functions and wavelet expansions based on several scaling functions*, J. Approx. Theory**78**(1994), no. 3, 373–401. MR**1292968**, 10.1006/jath.1994.1085**9.**T. N. Goodman,*Pairs of refinable bivariate splines*, Advanced Topics in Multivariate Approximation (F. Fontanelle, K. Jetter and L. L. Schumaker, eds.), World Sci. Publ. Co., 1996.**10.**T. N. T. Goodman, S. L. Lee, and W. S. Tang,*Wavelets in wandering subspaces*, Trans. Amer. Math. Soc.**338**(1993), no. 2, 639–654. MR**1117215**, 10.1090/S0002-9947-1993-1117215-0**11.**Christopher Heil, Gilbert Strang, and Vasily Strela,*Approximation by translates of refinable functions*, Numer. Math.**73**(1996), no. 1, 75–94. MR**1379281**, 10.1007/s002110050185**12.**Roger A. Horn and Charles R. Johnson,*Topics in matrix analysis*, Cambridge University Press, Cambridge, 1991. MR**1091716****13.**C. K. Chui and L. L. Schumaker (eds.),*Approximation theory VIII. Vol. 2*, Series in Approximations and Decompositions, vol. 6, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. Wavelets and multilevel approximation. MR**1471770****14.**R. Jia,*Shift-invariant spaces and linear operator equations*, Israel J. Math.**103**(1998), 259-288.**15.**R. Jia,*Characterization of smoothness of multivariate refinable functions in Sobolev spaces*, Trans. Amer. Math. Soc. (to appear).**16.**Rong Qing Jia and Charles A. Micchelli,*Using the refinement equations for the construction of pre-wavelets. II. Powers of two*, Curves and surfaces (Chamonix-Mont-Blanc, 1990) Academic Press, Boston, MA, 1991, pp. 209–246. MR**1123739****17.**R. Jia, S. Riemenschneider and D. Zhou,*Approximation by multiple refinable functions*, Canadian J. Math.**49**(1997), 944-962. CMP**98:08****18.**Rong Qing Jia and Zuowei Shen,*Multiresolution and wavelets*, Proc. Edinburgh Math. Soc. (2)**37**(1994), no. 2, 271–300. MR**1280683**, 10.1017/S0013091500006076**19.**Q. Jiang,*On the regularity of matrix refinable functions*, SIAM J. Math. Anal.**29**(1998), 1157-1176. CMP**98:11****20.**Q. Jiang and S. L. Lee,*Matrix continuous refinement equations*, preprint, 1996.**21.**Q. Jiang and Z. Shen,*On existence and weak stability of matrix refinable functions*, Constr. Approx., to appear.**22.**W. Lawton, S. L. Lee, and Zuowei Shen,*Stability and orthonormality of multivariate refinable functions*, SIAM J. Math. Anal.**28**(1997), no. 4, 999–1014. MR**1453317**, 10.1137/S003614109528815X**23.**Ruilin Long, Wen Chen, and Shenglan Yuan,*Wavelets generated by vector multiresolution analysis*, Appl. Comput. Harmon. Anal.**4**(1997), no. 3, 317–350. MR**1454406**, 10.1006/acha.1997.0216**24.**C. Micchelli and T. Sauer,*Regularity of multiwavelets*, Advances in Comp. Math.,**7**(1997), 455-456. CMP**98:01****25.**G. Plonka,*Approximation order provided by refinable function vectors*, Constr. Approx.**13**(1997), no. 2, 221–244. MR**1437211**, 10.1007/s003659900039**26.**Z. Shen,*Refinable function vectors*, SIAM J. Math. Anal.**29**(1998), 235-250. CMP**98:11****27.**G. Strang and G. Fix,*A Fourier analysis of finite-element variational method*, Constructive Aspects of Functional Analysis, (G. Geymonat ed.), C.I.M.E, 1973, pp. 793-840.**28.**H. Levy and F. Lessman,*Finite difference equations*, Dover Publications, Inc., New York, 1992. Reprint of the 1961 edition. MR**1217083**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
39B62,
42B05,
41A15,
42C15

Retrieve articles in all journals with MSC (1991): 39B62, 42B05, 41A15, 42C15

Additional Information

**Qingtang Jiang**

Affiliation:
Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 and Department of Mathematics, Peking University, Beijing 100871, China

Email:
qjiang@haar.math.nus.edu.sg

DOI:
https://doi.org/10.1090/S0002-9947-99-02449-6

Keywords:
Matrix refinable function,
transition operator,
stability,
orthonormality,
approximation order,
regularity

Received by editor(s):
September 26, 1996

Published electronically:
February 15, 1999

Additional Notes:
The author was supported by an NSTB post-doctoral research fellowship at the National University of Singapore.

Article copyright:
© Copyright 1999
American Mathematical Society