Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Quantum Cohomology Ring of Flag Varieties


Author: Ionut Ciocan-Fontanine
Journal: Trans. Amer. Math. Soc. 351 (1999), 2695-2729
MSC (1991): Primary 14M15; Secondary 14N10
DOI: https://doi.org/10.1090/S0002-9947-99-02230-8
Published electronically: February 5, 1999
MathSciNet review: 1487610
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the small quantum cohomology ring of complete flag varieties by algebro-geometric methods, as presented in our previous work Quantum cohomology of flag varieties (Internat. Math. Res. Notices, no. 6 (1995), 263-277). We also give a geometric proof of the quantum Monk formula.


References [Enhancements On Off] (What's this?)

  • [Bat] V.V. Batyrev, Quantum cohomology rings of toric varieties, Astérisque 218 (1991), 9-34.
  • [Beh] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127(3) (1997), 601-617. CMP 97:07
  • [BM] K. Behrend and Y. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. Journal 85 (1996), 1-60. CMP 97:02
  • [BGG] I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Schubert cells and cohomology of the space $G/P$, Russian Math. Surveys 28 (1973), 1-26. MR 55:2941
  • [Be1] A. Bertram, Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian, Internat. J. Math. 5 (1995), 811-825. MR 96h:14070
  • [Be2] -, Quantum Schubert calculus, Adv. Math. (to appear). CMP 97:14
  • [BDW] A. Bertram, G. Daskalopoulos, and R. Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996), 529-571. MR 96f:14066
  • [Bo] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacte, Ann. of Math. (2) 57 (1953), 115-207. MR 14:490e
  • [C-F1] I. Ciocan-Fontanine, Quantum cohomology of flag varieties, Internat. Math. Res. Notices, no. 6 (1995), 263-277. MR 96h:14071
  • [C-F2] -, The quantum cohomology ring of flag varieties, University of Utah Ph.D.Thesis (1996). CMP 98:06
  • [CM] B. Crauder and R. Miranda, Quantum cohomology of rational surfaces, in The moduli space of curves, R. Dijkgraaf, C. Faber and G. van der Geer, eds., Birkhäuser, 1995, pp. 33-80. MR 97i:14033
  • [D] M. Demazure, Désingularization des variétés de Schubert généralisée, Ann. Scient. École Normale Sup. 7 (1974), 53-88. MR 50:7174
  • [E] C. Ehresmann, Sur la topologie des certaines espaces homogènes, Ann. of Math. 35 (1934), 396-443.
  • [FGP] S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert polynomials, J. Amer. Math. Soc. 10 (1997), 565-596. MR 98d:14063
  • [F1] W. Fulton, Flags, Schubert polynomials, degeneracy loci and determinantal formulas, Duke Math. Journal 65 (1991), 381-420. MR 93e:14007
  • [FP] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, in Proceedings of the 1995 AMS Summer Institute in Santa Cruz (to appear). CMP 98:07
  • [G] A. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices, no. 13 (1996), 613-663. MR 97e:14015
  • [GK] A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), 609-641. MR 96c:58027
  • [Gr] A. Grothendieck, Techniques de construction et théorèmes d'existence en géometrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki 221 (1960/61). CMP 98:09
  • [H] R. Hartshorne, Algebraic Geometry, Springer Verlag, 1977. MR 57:3116
  • [Ki1] B. Kim, Quot schemes for flags and Gromov invariants for flag varieties, preprint (1995).
  • [Ki2] -, On equivariant quantum cohomology, Internat. Math. Res. Notices, no. 17 (1996), 841-851. CMP 97:04
  • [Ki3] -, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, preprint (1996).
  • [Kl] S. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287-297. MR 50:13063
  • [Kol] J. Kollár, Rational curves on algebraic varieties, Springer Verlag, 1996. MR 98c:14001
  • [KM] M. Kontsevich and Y. Manin, Gromov-Witten classes, quantum cohomology and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562. MR 95i:14049
  • [Kuz] A. Kuznetsov, Laumon's resolution of Drinfeld's compactification is small, Math. Research Letters 4 (1997), 349-364. MR 98d:14022
  • [LS1] A. Lascoux and M.-P. Schützenberger, Polynômes de Schubert, C.R. Acad. Sci. Paris 294 (1982), 447-450. MR 83e:14039
  • [LS2] -, Symmetry and flag manifolds, in Invariant Theory, F. Gherardelli ed., Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 118-144. MR 85e:14073
  • [Lau1] G. Laumon, Un anlogue global du cône nilpotent, Duke Math. Journal 57 (1988), 647-671. MR 90a:14012
  • [Lau2] -, Faisceaux automorphes liés aux sèries d'Eisenstein, in Automorphic forms, Shimura varieties and L-functions, L. Clozel and J.S. Milne eds., vol. 1, Academic Press, 1990, pp. 227-281. MR 91k:11106
  • [LT1] J.Li and G. Tian, Quantum cohomology of homogeneous varieties, preprint (1995).
  • [LT2] -, Virtual moduli cycles and Gromov-Witten invariants, preprint (1996).
  • [MM] B. Mann and J. Milgram, On the moduli space of $SU(n)$ monopoles and holomorphic maps to flag manifolds, J. Differential Geom. 38 (1993), 39-103. MR 95c:58031
  • [Mo] D. Monk, The geometry of flag manifolds, Proc. London Math. Soc.(3) 9 (1959), 253-286. MR 21:5641
  • [Mu] D. Mumford, Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton, NJ, 1966. MR 35:187
  • [QR] Z. Qin and Y. Ruan, Quantum cohomology of projective bundles over $\mathbb{P}^{n}$, Trans. Amer. Math. Soc. (to appear). CMP 97:05
  • [RT] Y. Ruan, G. Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), 259-367. MR 96m:58033
  • [ST] B. Siebert, G. Tian, On quantum cohomology of Fano manifolds and a formula of Vafa and Intriligator, preprint (1994). MR 90b:81080
  • [W] E. Witten, Topological sigma model, Commun. Math. Phys. 118 (1988), 411-449.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14M15, 14N10

Retrieve articles in all journals with MSC (1991): 14M15, 14N10


Additional Information

Ionut Ciocan-Fontanine
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
Address at time of publication: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208-2730
Email: ciocan@math.nwu.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02230-8
Keywords: Quantum cohomology, flag varieties, hyperquot schemes, degeneracy loci
Received by editor(s): April 2, 1997
Published electronically: February 5, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society