Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Compressions of resolvents
and maximal radius of regularity


Authors: C. Badea and M. Mbekhta
Journal: Trans. Amer. Math. Soc. 351 (1999), 2949-2960
MSC (1991): Primary 47A10, 47A20
DOI: https://doi.org/10.1090/S0002-9947-99-02365-X
Published electronically: March 8, 1999
MathSciNet review: 1621709
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $\lambda - T$ is left invertible in $L(H)$ for all $\lambda \in \Omega$, where $\Omega$ is an open subset of the complex plane. Then an operator-valued function $L(\lambda)$ is a left resolvent of $T$ in $\Omega$ if and only if $T$ has an extension $\tilde{T}$, the resolvent of which is a dilation of $L(\lambda)$ of a particular form. Generalized resolvents exist on every open set $U$, with $\overline{U}$ included in the regular domain of $T$. This implies a formula for the maximal radius of regularity of $T$ in terms of the spectral radius of its generalized inverses. A solution to an open problem raised by
J. Zemánek is obtained.


References [Enhancements On Off] (What's this?)

  • 1. G.R. Allan : On one-sided inverses in Banach algebras of holomorphic vector-valued functions, J. London Math. Soc. 42 (1967), 463-470. MR 35:5939
  • 2. G.R. Allan : Holomorphic vector-valued functions on a domain of holomorphy, J. London Math. Soc. 42 (1967), 509-513. MR 35:5940
  • 3. C. Apostol : The correction by compact perturbations of the singular behaviour of operators, Rev. Roumaine Math. Pures et Appl. 21 (1976), 155-175. MR 58:7180
  • 4. C. Apostol, K. Clancey : On generalized resolvents, Proc. Amer. Math. Soc. 58 (1976), 163-168. MR 53:14162
  • 5. C. Apostol, K. Clancey : Generalized inverses and spectral theory, Trans. Amer. Math. Soc. 215 (1976), 293-300. MR 52:4002
  • 6. C. Apostol, L.A. Fialkow, D.A. Herrero, D. Voiculescu : Approximation of Hilbert space Operators, Vol. 2, Pitman Res. Notes in Math. 102, 1984. MR 85m:47002
  • 7. C. Badea, M. Mbekhta : Generalized inverses and the maximal radius of regularity of a Fredholm operator, Integral Eq. Oper. Th. 28 (1997), 133-146. MR 98e:47018
  • 8. H. Bart : Holomorphic relative inverses of operator valued functions, Math. Ann. 208 (1974), 179-194. MR 49:11289
  • 9. D.A. Herrero : Approximation of Hilbert space Operators, Vol. 1, 2nd ed, Pitman Res. Notes in Math. 224, 1989. MR 91k:47002
  • 10. J.-Ph. Labrousse, M. Mbekhta :Résolvant généralisé et séparation des points singuliers quasi-Fredholm, Trans. Amer. Math. Soc. 333 (1992), 299-313. MR 92k:47007
  • 11. M. Mbekhta : Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. MR 88i:47010
  • 12. M. Mbekhta : Résolvant généralisé et théorie spectrale, J. Operator Th. 21 (1989), 69-105. MR 91a:47004
  • 13. T.J. Ransford : Generalised spectra and analytic multivalued functions, J. London Math.Soc. 29 (1984), 306-322. MR 85f:46091
  • 14. C.J. Read : Extending an operator from a Hilbert space to a larger Hilbert space so as to reduce its spectrum, Israel J. Math. 57 (1987), 375-380. MR 88e:47014
  • 15. P. Saphar : Contribution a l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. MR 32:4549
  • 16. P. Saphar : Sur les applications linéaires dans un espace de Banach II, Ann. Sci. Ecole Norm. Sup. Ser. 3, 82 (1965), 205-240. MR 35:2164
  • 17. M.A. Shubin : On holomorphic families of subspaces of a Banach space, Integral Eq. Oper. Th. 2-3 (1979), 407-420. MR 80m:46045
  • 18. Z. S{\l}odkowski : Analytic set-valued functions and spectra, Math. Ann. 256 (1981), 363-386. MR 83b:46070
  • 19. J. Zemánek : One-sided spectral calculus, Problem 2.10 in : Linear and Complex Analysis Problem Book 3 (V.P. Havin, N.K. Nikolski, eds.), Lect. Notes Math. 1573 (1994), 102-104. MR 96c:00001a

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 47A10, 47A20

Retrieve articles in all journals with MSC (1991): 47A10, 47A20


Additional Information

C. Badea
Affiliation: URA 751 au CNRS & UFR de Mathématiques, Université de Lille I, F–59655 Villeneuve d’Ascq, France
Email: badea@gat.univ-lille1.fr

M. Mbekhta
Affiliation: URA 751 au CNRS & UFR de Mathématiques, Université de Lille I, F–59655 Villeneuve d’Ascq, France
Address at time of publication: University of Galatasaray, Çiragan Cad no 102, Ortakoy 80840, Istanbul, Turkey
Email: mbekhta@gat.univ-lille1.fr

DOI: https://doi.org/10.1090/S0002-9947-99-02365-X
Keywords: One-sided resolvents, Hilbert space operators, spectral radius, dilations and compressions
Received by editor(s): February 17, 1997
Published electronically: March 8, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society